Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target ...Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target techniques, with a specific emphasis on targeting the vascular endothelial growth factor, but have not reached ideal therapeutic efficacy. In response to this issue, our study introduced a novel nanoparticle system known as CS-siRNA/PEITC&L-cRGD NPs. These chitosan-based nanoparticles have been recognized for their excellent biocompatibility and ability to deliver genes. To enhance their targeted delivery capability, they were combined with a cyclic RGD peptide (cRGD). Targeted co-delivery of gene and chemotherapeutic agents was achieved through the use of a negatively charged lipid shell and cRGD, which possesses high affinity for integrin αvβ3 overexpressed in tumor cells and neovasculature. In this multifaceted approach, co-delivery of VEGF siRNA and phenethyl isothiocyanate (PEITC) was employed to target both tumor vascular endothelial cells and tumor cells simultaneously. The co-delivery of VEGF siRNA and PEITC could achieve precise silencing of VEGF, inhibit the accumulation of HIF-1α under hypoxic conditions, and induce apoptosis in tumor cells. In summary, we have successfully developed a nanoparticle delivery platform that utilizes a dual mechanism of action of anti-tumor angiogenesis and pro-tumor apoptosis, which provides a robust and potent strategy for the delivery of anti-cancer therapeutics.展开更多
Deoxynivalenol(DON)is considered to be the most harmful mycotoxin that affects the intestinal health of animals and humans.Phenethyl isothiocyanate(PEITC)in feedstuff is an anti-nutritional factor and impairs nutrient...Deoxynivalenol(DON)is considered to be the most harmful mycotoxin that affects the intestinal health of animals and humans.Phenethyl isothiocyanate(PEITC)in feedstuff is an anti-nutritional factor and impairs nutrient digestion and absorption in the animal intestinal.In the current study,we aimed to explore the effects of PEITC on DON-induced apoptosis,intestinal tight junction disorder,and its potential molecular mechanism in the porcine jejunum epithelial cell line(IPEC-J2).Our results indicated that PEITC treatment markedly alleviated DON-induced cytotoxicity,decreasing the apoptotic cell percentage and pro-apoptotic mRNA/protein levels,and increasing zonula occludens-1(ZO-1),occludin and claudin-1 mRNA/protein expression.Meanwhile,PEITC treatment ameliorated DON-induced an increase of the inducible nitric oxide synthase(iNOS)and cyclooxygenase 2(COX-2)mRNA levels and intracellular reactive oxygen species(ROS)level,and a decrease of glutathione peroxidase 1(GPx1),superoxide dismutase 2(SOD2),catalase(CAT)and heme oxygenase 1(HO-1)mRNA levels.Additionally,PEITC treatment significantly down-regulated autophagy-related protein 5(ATG5),beclin-1 and microtubuleassociated protein 1 light chain 3B(LC3-II)mRNA/protein levels,decreased the number of green fluorescent protein-microtubule-associated protein 1 light-chain 3(GFP-LC3)puncta and phosphatidylinositol 3 kinase(PI3K)protein expression,and up-regulated phospho-protein kinase B(p-Akt)and phospho-mammalian target of rapamycin(p-mTOR)protein expression against DON.However,the activation of autophagy by rapamycin,an autophagy agonist,abolished the protective effects of PEITC against DON-induced cytotoxicity,apoptosis and intestinal tight junction disorder.Collectively,PEITC could confer protection against DON-induced porcine intestinal epithelial cell injury by suppressing ROSmediated autophagy.展开更多
基金supported by Guangdong Basic and Applied Basic Research Foundation(2023A1515010969)Natural Science Foundation of Top Talent of SZTU(GDRC202305).
文摘Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target techniques, with a specific emphasis on targeting the vascular endothelial growth factor, but have not reached ideal therapeutic efficacy. In response to this issue, our study introduced a novel nanoparticle system known as CS-siRNA/PEITC&L-cRGD NPs. These chitosan-based nanoparticles have been recognized for their excellent biocompatibility and ability to deliver genes. To enhance their targeted delivery capability, they were combined with a cyclic RGD peptide (cRGD). Targeted co-delivery of gene and chemotherapeutic agents was achieved through the use of a negatively charged lipid shell and cRGD, which possesses high affinity for integrin αvβ3 overexpressed in tumor cells and neovasculature. In this multifaceted approach, co-delivery of VEGF siRNA and phenethyl isothiocyanate (PEITC) was employed to target both tumor vascular endothelial cells and tumor cells simultaneously. The co-delivery of VEGF siRNA and PEITC could achieve precise silencing of VEGF, inhibit the accumulation of HIF-1α under hypoxic conditions, and induce apoptosis in tumor cells. In summary, we have successfully developed a nanoparticle delivery platform that utilizes a dual mechanism of action of anti-tumor angiogenesis and pro-tumor apoptosis, which provides a robust and potent strategy for the delivery of anti-cancer therapeutics.
基金This study was financially supported by the National Natural Science Foundation of China(32072926,31772811)the Priority Academic Program Development of Jiangsu Higher Education Institutions(Jiangsu,China).
文摘Deoxynivalenol(DON)is considered to be the most harmful mycotoxin that affects the intestinal health of animals and humans.Phenethyl isothiocyanate(PEITC)in feedstuff is an anti-nutritional factor and impairs nutrient digestion and absorption in the animal intestinal.In the current study,we aimed to explore the effects of PEITC on DON-induced apoptosis,intestinal tight junction disorder,and its potential molecular mechanism in the porcine jejunum epithelial cell line(IPEC-J2).Our results indicated that PEITC treatment markedly alleviated DON-induced cytotoxicity,decreasing the apoptotic cell percentage and pro-apoptotic mRNA/protein levels,and increasing zonula occludens-1(ZO-1),occludin and claudin-1 mRNA/protein expression.Meanwhile,PEITC treatment ameliorated DON-induced an increase of the inducible nitric oxide synthase(iNOS)and cyclooxygenase 2(COX-2)mRNA levels and intracellular reactive oxygen species(ROS)level,and a decrease of glutathione peroxidase 1(GPx1),superoxide dismutase 2(SOD2),catalase(CAT)and heme oxygenase 1(HO-1)mRNA levels.Additionally,PEITC treatment significantly down-regulated autophagy-related protein 5(ATG5),beclin-1 and microtubuleassociated protein 1 light chain 3B(LC3-II)mRNA/protein levels,decreased the number of green fluorescent protein-microtubule-associated protein 1 light-chain 3(GFP-LC3)puncta and phosphatidylinositol 3 kinase(PI3K)protein expression,and up-regulated phospho-protein kinase B(p-Akt)and phospho-mammalian target of rapamycin(p-mTOR)protein expression against DON.However,the activation of autophagy by rapamycin,an autophagy agonist,abolished the protective effects of PEITC against DON-induced cytotoxicity,apoptosis and intestinal tight junction disorder.Collectively,PEITC could confer protection against DON-induced porcine intestinal epithelial cell injury by suppressing ROSmediated autophagy.