Selective phenol hydrogenation is a green approach to produce cyclohexanone.It still remains a big challenge to prepare efficient supports of the catalysts for the phenol hydrogenation via a simple and cost-effective ...Selective phenol hydrogenation is a green approach to produce cyclohexanone.It still remains a big challenge to prepare efficient supports of the catalysts for the phenol hydrogenation via a simple and cost-effective approach.Herein,a facile approach was developed,i.e.,direct calcination of activated carbon(AC)under argon at high temperature,to improve its structure and surface properties.The modified AC materials were supported with Pd nanoparticles(NPs)to fabricate the Pd/C catalysts.The as-prepared Pd/C600 catalyst exhibits superior catalytic performance in the phenol hydrogenation,and its turnover frequency(TOF)value is 199.2 h^-1,1.31 times to that of Pd/C-raw.The Pd/C600 catalyst presents both better hydrophobicity and more structural defects,contributing to the improved dispersibility in the reaction solution(phenol-cyclohexane),the better Pd dispersion and the smaller Pd size,which result in the enhancement of the catalytic performance.Furthermore,the as-prepared Pd/C600 catalyst shows a good recyclability.展开更多
Experimental results on solubility of the styrene, phenol, methylphenylcarbinol, acetophenone, ethyl benzene, propylene glycol and molybdenum as a complex with Trilon B in supercritical CO2 obtained using a dynamic (f...Experimental results on solubility of the styrene, phenol, methylphenylcarbinol, acetophenone, ethyl benzene, propylene glycol and molybdenum as a complex with Trilon B in supercritical CO2 obtained using a dynamic (flow) method are presented. The obtained data are described in the framework of Peng-Robinson equation. The results of the experients on the extraction of organic components from waste formed in the olefin epoxidation process at Nizhnekam-skneftekhim Inc., on the analysis of extract composition, and on the testing of the extract as an epoxidation catalyst are presented. The supercritical water oxidation (SCWO) process of epoxidation process waste was conducted in periodical and continuous mode. The analysis results of reaction product are given. Pilot experiments on dry sediment formation were conducted using Radio Frequency (RF) Inductively Coupled Plasma (ICP) of low pressure.展开更多
基金financial supports from the National Key R&D Program(2016YFB0301503)the National Natural Science Foundation of China(21776127,21921006)+2 种基金the Jiangsu Province Key R&D Program(BE2018009-2)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201902)。
文摘Selective phenol hydrogenation is a green approach to produce cyclohexanone.It still remains a big challenge to prepare efficient supports of the catalysts for the phenol hydrogenation via a simple and cost-effective approach.Herein,a facile approach was developed,i.e.,direct calcination of activated carbon(AC)under argon at high temperature,to improve its structure and surface properties.The modified AC materials were supported with Pd nanoparticles(NPs)to fabricate the Pd/C catalysts.The as-prepared Pd/C600 catalyst exhibits superior catalytic performance in the phenol hydrogenation,and its turnover frequency(TOF)value is 199.2 h^-1,1.31 times to that of Pd/C-raw.The Pd/C600 catalyst presents both better hydrophobicity and more structural defects,contributing to the improved dispersibility in the reaction solution(phenol-cyclohexane),the better Pd dispersion and the smaller Pd size,which result in the enhancement of the catalytic performance.Furthermore,the as-prepared Pd/C600 catalyst shows a good recyclability.
文摘Experimental results on solubility of the styrene, phenol, methylphenylcarbinol, acetophenone, ethyl benzene, propylene glycol and molybdenum as a complex with Trilon B in supercritical CO2 obtained using a dynamic (flow) method are presented. The obtained data are described in the framework of Peng-Robinson equation. The results of the experients on the extraction of organic components from waste formed in the olefin epoxidation process at Nizhnekam-skneftekhim Inc., on the analysis of extract composition, and on the testing of the extract as an epoxidation catalyst are presented. The supercritical water oxidation (SCWO) process of epoxidation process waste was conducted in periodical and continuous mode. The analysis results of reaction product are given. Pilot experiments on dry sediment formation were conducted using Radio Frequency (RF) Inductively Coupled Plasma (ICP) of low pressure.