The study investigates the magnetic separation of Fe from automobile shredder residue (ASR) ( 〈 0.25 mm) and its application for phenol degradation in water. The magnetically separated Fe was subjected to an ultr...The study investigates the magnetic separation of Fe from automobile shredder residue (ASR) ( 〈 0.25 mm) and its application for phenol degradation in water. The magnetically separated Fe was subjected to an ultrasonically assisted acid treatment, and the degradation of phenol in an aqueous solution using nano/micro-size Fe (n/m Fe) was investigated in an effort to evaluate the possibility of utilizing n/m Fe to remove phenol from wastewater. The prepared n/m Fe was analyzed by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The eflects of the dosages ot n/mFe, pH, concentration of phenol and amount of H2O2 on phenol removal were evaluated. The results confirm that the phenol degradation rate was improved with an increase in the dosages of n/mFe and H2O2; however, the rate is reduced when the phenol concentration is higher. The degradation of phenol by n/mFe followed the pseudo-first-order kinetics. The value of the reaction rate constant (k)was increased as the amounts of n/m Fe and H2O2 increased. Conversely, the value of k was reduced when the concentration of phenol was increased. The probable mechanism behind the degradation of phenol by n/m Fe is the oxidation of phenol through hydroxyl radicals which are produced during the reaction between H2O2 and n/m Fe.展开更多
文摘The study investigates the magnetic separation of Fe from automobile shredder residue (ASR) ( 〈 0.25 mm) and its application for phenol degradation in water. The magnetically separated Fe was subjected to an ultrasonically assisted acid treatment, and the degradation of phenol in an aqueous solution using nano/micro-size Fe (n/m Fe) was investigated in an effort to evaluate the possibility of utilizing n/m Fe to remove phenol from wastewater. The prepared n/m Fe was analyzed by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The eflects of the dosages ot n/mFe, pH, concentration of phenol and amount of H2O2 on phenol removal were evaluated. The results confirm that the phenol degradation rate was improved with an increase in the dosages of n/mFe and H2O2; however, the rate is reduced when the phenol concentration is higher. The degradation of phenol by n/mFe followed the pseudo-first-order kinetics. The value of the reaction rate constant (k)was increased as the amounts of n/m Fe and H2O2 increased. Conversely, the value of k was reduced when the concentration of phenol was increased. The probable mechanism behind the degradation of phenol by n/m Fe is the oxidation of phenol through hydroxyl radicals which are produced during the reaction between H2O2 and n/m Fe.