Sulfuric acid-phenol and sulfuric acid-anthrone methods were used to detect polysaccharide content in shoots of Aralia elata( Miq.) Seem.,and the conversion factor to glucose was measured with refined polysaccharide...Sulfuric acid-phenol and sulfuric acid-anthrone methods were used to detect polysaccharide content in shoots of Aralia elata( Miq.) Seem.,and the conversion factor to glucose was measured with refined polysaccharides. Comprehensive evaluation was carried out by linear relationship,precision,reproducibility,stability and recovery rate. The results showed that the linear relationship between glucose concentration and absorbance was good when glucose concentration was0-40 μg/ml,and the average recovery rate was equal to or higher than 97. 00% with good reproducibility( RSD 〈 1. 60%,n = 5). It revealed that the two methods were accurate and reliable,and suitable for the determination of polysaccharide content in the shoots of A. elata. Polysaccharide content detected by sulfuric acid-phenol and sulfuric acid-anthrone methods was 19. 31% and 20. 40% respectively.展开更多
[ Objective] The experiment aimed to provide a theoretical base of optimal cultivation management for the high yield and good quality and high efficiency of winter wheat. [ Method] The effects of two sulfur fertilizer...[ Objective] The experiment aimed to provide a theoretical base of optimal cultivation management for the high yield and good quality and high efficiency of winter wheat. [ Method] The effects of two sulfur fertilizer application methods on dynamic changes of grain protein content and glutenin content of Yumai 49 and Yumai 66 during wheat grain filling stage were studied under the field conditions. [Result] Both the grain protein and glutenin content of two cultivars were increased by sulfur fertilizer, particularly, the effects on Yumai 49 were more significant.[ Conclusion] The grain content and glutenin content of different wheat cultivars could be increased by taking different sulfur fertilizer application methods.展开更多
In this paper, Ce_(0.2)Zr_(0.8)O_2 composite supports were prepared by different Ce-addition methods including impregnation of cerium(CeZr-imp), impregnation of citric acid and cerium(CeZr-CA) simultaneously and depos...In this paper, Ce_(0.2)Zr_(0.8)O_2 composite supports were prepared by different Ce-addition methods including impregnation of cerium(CeZr-imp), impregnation of citric acid and cerium(CeZr-CA) simultaneously and deposition precipitation method(CeZr-DP), respectively. The as-prepared supports were applied to prepare 10 wt% MoO_3/Ce_(0.2)Zr_(0.8)O_2 catalysts for sulfur-resistant methanation. The N_2 adsorption/desorption,X-ray diffraction(XRD), Raman spectroscopy(RS), X-ray photoelectron(XPS), temperature-programmed reduction by hydrogen(H_2-TPR) were undertaken to get textural properties, morphological information and structures of the catalysts. The results showed that Mo O_3 was highly dispersed on the surface of these three supports and Ce was mostly of coexisted in Ce^(4+)/Ce^(3+) redox pairs. Compared with Mo/CeZrimp, the CO conversion increased by 10% and 15% for Mo/CeZr-CA and Mo/CeZr-DP, respectively. This was mainly attributed to the larger specific surface area, Ce^(3+) concentration and content of active MoS_2 on the surface of catalysts.展开更多
The quantification of transparent exopolymer particles(TEP) by colorimetric method is of large error and low repeatability,one major reason of which is related to the absence of clear definition and evaluation for par...The quantification of transparent exopolymer particles(TEP) by colorimetric method is of large error and low repeatability,one major reason of which is related to the absence of clear definition and evaluation for part steps of the original method.It is obscure that the 80% sulfuric acid solution,acted as the extraction solution in the determination of TEP,is prepared based on a volume ratio or mass ratio.Furthermore,the change of solubility of recently available Gum Xanthan(GX) from the market means that the original protocol is no longer applicable,and the grinding of GX stock solution with a tissue grinder is replaced by shaking with a rotating shaker in the study to prevent the excessive dissolution of GX.We found that different preparation techniques could result in the varied concentrations of 80% H_(2)SO_(4).The duration of shaking during the preparation of standard solution significantly affected the slope of the calibration curve,which caused different correction results of TEP.The impacts of different extraction solution concentrations and shaking time of GX solution on the quantification of TEP were investigated based on the field sampling and laboratory analysis.The extraction capacities of H_(2)SO_(4) with different concentrations for Alcian Blue were distinct,but had limited effect on the final measuring result of TEP.The change of the standard curve slope came along with the variation of shaking time,which markedly altered the detection limit and calibration result,and the extended shaking time was in favor of the determination of low-concentration TEP.It was suggested that the extraction solution concentration,shaking time and filtration volume of standard solution are required to be well controlled and selected to obtain more accurate results for TEP with different concentrations.展开更多
A new potential energy surface (PES) for the atmospheric formation of sulfuric acid from OH+SO2 is investigated using density functional theory and high-level ab initio molecular orbital theory. A pathway focused o...A new potential energy surface (PES) for the atmospheric formation of sulfuric acid from OH+SO2 is investigated using density functional theory and high-level ab initio molecular orbital theory. A pathway focused on the new PES assumes the reaction to take place between the radical complex SO3.HO2 and H2O. The unusual stability of SO3.HO2 is the principal basis of the new pathway, which has the same final outcome as the current reaction mechanism in the literature but it avoids the production and complete release of SO3. The entire reaction pathway is composed of three consecutive elementary steps: (1) HOSO2+O2-+SO3.HO2, (2) SO3.HO2+H20-+SO3·H2O·HO2, (3) SO3.H20.HO2-+H2SO4+HO2. All three steps have small energy barriers, under 10 kcal/rnol, and are exotherrnic, and the new pathway is there- fore favorable both kinetically and therrnodynarnically. As a key step of the reactions, step (3), HO2 serves as a bridge molecule for low-barrier hydrogen transfer in the hydrolysis of SO3. Two significant atmospheric implications are expected frorn the present study. First, SO3 is not released from the oxidation of SO2 by OH radical in the atmosphere. Second, the conversion of SO2 into sulfuric acid is weakly dependent on the humidity of air.展开更多
A simple and general method for the synthesis of bi(acyl)disulfides is reported.Sulfur is allowed to react with sodium hydroxide to give sodium disulfide at 65℃ under PTC,which can react with acyl halides to afford b...A simple and general method for the synthesis of bi(acyl)disulfides is reported.Sulfur is allowed to react with sodium hydroxide to give sodium disulfide at 65℃ under PTC,which can react with acyl halides to afford bi(acyl)disulfides in good to excellent isolated yields.The effects of solvents and phase transfer catalysts are discussed.展开更多
The oxysulfide La3NbS2O5 was synthesized by sulfurization using H2S and characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS) and field emission scanning electron microscopy (FE-...The oxysulfide La3NbS2O5 was synthesized by sulfurization using H2S and characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS) and field emission scanning electron microscopy (FE-SEM). The relationship between the sulfurization conditions and the photocatalytic activities for H2 evolution was investigated. Sulfurization method allowed for synthesis of La3NbS2O5 at much lower temperatures and significantly shortened reaction time of 1 h compared with conventional solid-state techniques. The particle morphologies were regular platelike with sizes of 0.1-0.6μm and smooth surfaces. The highest activity for H2 evolution was obtained at 1073 K for 1 h, which was about 1.83 times that of La3NbS2O5 prepared by solid-state method.展开更多
Field experiments were conducted at Cereal Crops Research Institute, Pirsabak, Nowshera, Pakistan, during winter 2003~2004; 2004~2005 to evaluate the effect of nitrogen; sulfur levels; methods of nitrogen applicatio...Field experiments were conducted at Cereal Crops Research Institute, Pirsabak, Nowshera, Pakistan, during winter 2003~2004; 2004~2005 to evaluate the effect of nitrogen; sulfur levels; methods of nitrogen application on canola (Brassica napus L. cv. Bulbul-98) under rainfed conditions. Four levels of S (0, 10, 20,; 30 kg/ha); three levels of N (40, 60,; 80 kg/ha); a control treatment with both nutrients at zero level were included in the experiments. Sulfur levels were applied at sowing while N levels were applied by three methods (100% soil application, 90% soil+10% foliar application,; 80% soil +20% foliar application). The experiments were laid out in randomized complete block (RCB) design having four replications. Oil content increased significantly up to 20 kg S/ha but further increase in S level did not enhance oil content. Glucosinolate content increased from 13.6 to 24.6 μmol/g as S rate was increased from 0 to 30 kg/ha. Protein content increased from 22.4% to 23.2% as S rate was increased from 0 to 20 kg/ha. Oil content responded negatively to the increasing N levels. The highest N level resulted in the highest values for protein (23.5%); glucosinolate (19.9 μmol/g) contents. Methods of N application had no significant impact on any parameters under study.展开更多
Lithium-sulfur(Li-S)batteries,although a promising candidate of next-generation energy storage devices,are hindered by some bottlenecks in their roadmap toward commercialization.The key challenges include solving the ...Lithium-sulfur(Li-S)batteries,although a promising candidate of next-generation energy storage devices,are hindered by some bottlenecks in their roadmap toward commercialization.The key challenges include solving the issues such as low utilization of active materials,poor cyclic stability,poor rate performance,and unsatisfactory Coulombic efficiency due to the inherent poor electrical and ionic conductivity of sulfur and its discharged products(e.g.,Li2S2 and Li_(2)S),dissolution and migration of polysulfide ions in the electrolyte,unstable solid electrolyte interphase and dendritic growth on an odes,and volume change in both cathodes and anodes.Owing to the high specific surface area,pore volume,low density,good chemical stability,and particularly multimodal pore sizes,hierarchical porous carbon(HPC)mate rials have received considerable attention for circumventing the above pro blems in Li-S batteries.Herein,recent progress made in the synthetic methods and deployment of HPC materials for various components including sulfur cathodes,separators and interlayers,and lithium anodes in Li-S batteries is presented and summarized.More importantly,the correlation between the structures(pore volume,specific surface area,degree of pores,and heteroatom-doping)of HPC and the electrochemical performances of Li-S batteries is elaborated.Finally,a discussion on the challenges and future perspectives associated with HPCs for Li-S batteries is provided.展开更多
The research investigated the corrosion of the reinjection water system to ensure the safe production of the system.By analyzing the composition of the methanol-containing wastewater,the corrosion status of the inject...The research investigated the corrosion of the reinjection water system to ensure the safe production of the system.By analyzing the composition of the methanol-containing wastewater,the corrosion status of the injection water system was studied by the on-site materials 20#steel,Q235B steel and L316 steel for that the methanol-containing wastewater of a natural gas processing plant in northern Shaanxi had high acidity,Cl-and sulfide contents,salinity and corrosion.Then the grey system theory modeling software 3.0 was used to study the influence degree of various corrosion factors on the corrosion rate and depth of Q235B steel.The most important factors were determined,and countermeasures against corrosion were proposed.The results showed that L316 steel was more resistant to corrosion,and the corrosion rate was 0.0015 mm/a,which was less than the national standard(0.0760 mm/a).The maximum corrosion depth was 47.63μm,which was the lowest among the three materials.The corrosion rate and depth were the parent factors.Among the four factors of sulfide,Cl-,salinity and pH,grey relational degrees of sulfide were 0.75 and 0.80,respectively,which was the most important factor causing corrosion;using sulfur corrosion inhibitor protection method,TS-792C was selected by electrochemical method from three corrosion inhibitors.The impedance data simulation software ZSimpWin was used to simulate the equivalent circuit diagram,and the impedance of Q235B steel was the largest.The corrosion inhibition rate was up to 90.26%when corrosion rate was 0.0130 mm/a under the fitting of Tafel polarization curve,with the best anti-sulfur effect.At 80℃and a sulfide content of 300 mg/L,the corrosion rate of Q235B steel was less than 0.0760 mm/a.When the added amount was 100 mg/L,the corrosion current density and corrosion rate of the reinjection sewage was 0.462 mA/cm 2 and 0.0505 mm/a,both at the lowest values and with good temperature and sulfur resistance.展开更多
A new experimental calibration was undertaken in this study to get a more reliable sphalerite-galena sulfur isotope geothermometer. The experimental conditions selected in study were very similar to those of natural h...A new experimental calibration was undertaken in this study to get a more reliable sphalerite-galena sulfur isotope geothermometer. The experimental conditions selected in study were very similar to those of natural hydrothermal solution. The high-precision SF6 method was used in sulfur isotope analyses. The obtained calibration curve for sulfur isotope fractionation between sphalerite and galena can be expressed with the equation 10001nαSp-Gn= 0.74×106T-2+0.08.展开更多
Fifteen upland soils collected from the major arable areas in North China were used to assess the availability of soil sulfur (S) to plants in a pot experiment. Soils were extracted with various reagents and the extra...Fifteen upland soils collected from the major arable areas in North China were used to assess the availability of soil sulfur (S) to plants in a pot experiment. Soils were extracted with various reagents and the extractable S was determined using turbidimetric method or inductively coupled plasma atomic emission spectrometry (ICP-AES), respectively. In addition, mineralizable organic S, organic S, N/S ratio, sulfur availability index (SAI) and available sulfur correction value (ASC) in soils were also determined. The S amount extracted by 1.5 g L-1 CaCl2 was nearly equivalent to that by 0.25 mol L-1 KCl (40 ℃), and both of them were slightly smaller than that by 0.01 mol L-1 Ca(H2PO4)2 solution, as measured by turbidimetric method or ICP-AES. The extractable S measured by turbidimetric method was consistently smaller than that by ICP-AES. All methods tested except that for organic S and N/S ratio produced satisfactory results in the regression analyses of the relationships between the amounts of S extracted and plant dry matter weight and S uptake in the pot experiment. In general, 0.01 mol L-1 Ca (H2PO4) 2-extracted S determined by ICP-AES or turbidimetric method and 0.25 mol L-1 KCl(40℃)-extracted S determined by ICP-AES appeared to be the best indicators for evaluation of soil available S.展开更多
“High nutrient, low chlorophyll (HNLC)” regions were created by locking iron into sedimentary iron sulfides with hydrogen sulfide available from volcanic eruptions in surrounding oceans. Appropriate locations and de...“High nutrient, low chlorophyll (HNLC)” regions were created by locking iron into sedimentary iron sulfides with hydrogen sulfide available from volcanic eruptions in surrounding oceans. Appropriate locations and deployment methods for the iron fertilization were far from volcanoes, earthquakes and boundaries of tectonic plates to reduce the chance of iron-locking by volcanic sulfur compounds. The appropriate locations for the large-scale iron fertilization are proposed as Shag Rocks in South Georgia and the Bransfield Strait in Drake Passage in the Southern Ocean due to their high momentum flux causing efficient iron deployment. The iron (Fe) replete compounds, consisting of natural clay, volcanic ash, agar, N</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-size:12px;font-family:Verdana;">-fixing mucilaginous cyanobacteria, carbon black, biodegradable plastic foamed polylactic acid, fine wood chip, and iron-reducing marine bacterium, are deployed in the ocean to stay within a surface depth of 100</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-size:12px;font-family:Verdana;"><span style="font-size:12px;font-family:Verdana;"><span style="font-family:Verdana;font-size:12px;">m for phytoplankton digestion. The deployment method of Fe-replete composite with a duration of at least several years for the successful iron fertilization, is configured to be on the streamline of the Antarctic Circumpolar Current (ACC). This will result in high momentum flux for its efficient dispersion on the ocean surface where diatom, copepods, krill and humpback whale stay together (~100</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-size:12px;font-family:Verdana;">m). Humpback whales are proposed as a biomarker for the successful iron fertilization in large-scale since humpback whales feed on krill, which in turn feed on cockpods and diatoms. The successful large-scale iron fertilization may be indicated by the return of the humpback whales if they could not be found for a long period before the iron fertilization. On-line monitoring for the successful iron fertilization focuses on the simultaneous changes of the following two groups;the increase concentration group (chlorophyll, O</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-size:12px;font-family:Verdana;">, Dissolved Oxygen (DO), Di Methyl Sulfide (DMS)) and the decrease concentration group (nitrate, phosphate, silicate, CO</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-size:12px;font-family:Verdana;">, Dissolved CO</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-size:12px;font-family:Verdana;"> (DCO</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-size:12px;font-family:Verdana;">)). The monitoring of chlorophyll-</span><i><span style="font-size:12px;font-family:Verdana;">a</span></i><span style="font-size:12px;font-family:Verdana;">, nitrate phosphate, and silicate concentrations after deploying the Fe-replete complex is carried out throughout the day and night for the accurate measurement of algal blooms.展开更多
基金Supported by Scientific Research Project of Education Department of Liaoning Province,China(L2017lkyfwdf-05)Public Welfare Fund Project of Department of Science and Technology of Liaoning Province,China(2016003003)
文摘Sulfuric acid-phenol and sulfuric acid-anthrone methods were used to detect polysaccharide content in shoots of Aralia elata( Miq.) Seem.,and the conversion factor to glucose was measured with refined polysaccharides. Comprehensive evaluation was carried out by linear relationship,precision,reproducibility,stability and recovery rate. The results showed that the linear relationship between glucose concentration and absorbance was good when glucose concentration was0-40 μg/ml,and the average recovery rate was equal to or higher than 97. 00% with good reproducibility( RSD 〈 1. 60%,n = 5). It revealed that the two methods were accurate and reliable,and suitable for the determination of polysaccharide content in the shoots of A. elata. Polysaccharide content detected by sulfuric acid-phenol and sulfuric acid-anthrone methods was 19. 31% and 20. 40% respectively.
基金Supported by Key Project of National Scientific and Technological Support Plan (2006BAD02A07)Key Grant Scientific and Technolog-ical Project of Henan Province (0522010100)Scientific Research Foundation for Doctor of Henan Agricultural University (30200240)~~
文摘[ Objective] The experiment aimed to provide a theoretical base of optimal cultivation management for the high yield and good quality and high efficiency of winter wheat. [ Method] The effects of two sulfur fertilizer application methods on dynamic changes of grain protein content and glutenin content of Yumai 49 and Yumai 66 during wheat grain filling stage were studied under the field conditions. [Result] Both the grain protein and glutenin content of two cultivars were increased by sulfur fertilizer, particularly, the effects on Yumai 49 were more significant.[ Conclusion] The grain content and glutenin content of different wheat cultivars could be increased by taking different sulfur fertilizer application methods.
基金Financial supports from the National High Technology Research and Development Program of China (863 Project) (2015AA050504)the National Natural Science Foundation of China (21576203)
文摘In this paper, Ce_(0.2)Zr_(0.8)O_2 composite supports were prepared by different Ce-addition methods including impregnation of cerium(CeZr-imp), impregnation of citric acid and cerium(CeZr-CA) simultaneously and deposition precipitation method(CeZr-DP), respectively. The as-prepared supports were applied to prepare 10 wt% MoO_3/Ce_(0.2)Zr_(0.8)O_2 catalysts for sulfur-resistant methanation. The N_2 adsorption/desorption,X-ray diffraction(XRD), Raman spectroscopy(RS), X-ray photoelectron(XPS), temperature-programmed reduction by hydrogen(H_2-TPR) were undertaken to get textural properties, morphological information and structures of the catalysts. The results showed that Mo O_3 was highly dispersed on the surface of these three supports and Ce was mostly of coexisted in Ce^(4+)/Ce^(3+) redox pairs. Compared with Mo/CeZrimp, the CO conversion increased by 10% and 15% for Mo/CeZr-CA and Mo/CeZr-DP, respectively. This was mainly attributed to the larger specific surface area, Ce^(3+) concentration and content of active MoS_2 on the surface of catalysts.
基金The National Key Research and Development Project of China under contract No.2019YFC1407805the National Natural Science Foundation of China under contract Nos 41876134, 41676112 and 41276124+1 种基金the Tianjin 131 Innovation Team Program under contract No.20180314the Changjiang Scholar Program of Chinese Ministry of Education under contract No.T2014253。
文摘The quantification of transparent exopolymer particles(TEP) by colorimetric method is of large error and low repeatability,one major reason of which is related to the absence of clear definition and evaluation for part steps of the original method.It is obscure that the 80% sulfuric acid solution,acted as the extraction solution in the determination of TEP,is prepared based on a volume ratio or mass ratio.Furthermore,the change of solubility of recently available Gum Xanthan(GX) from the market means that the original protocol is no longer applicable,and the grinding of GX stock solution with a tissue grinder is replaced by shaking with a rotating shaker in the study to prevent the excessive dissolution of GX.We found that different preparation techniques could result in the varied concentrations of 80% H_(2)SO_(4).The duration of shaking during the preparation of standard solution significantly affected the slope of the calibration curve,which caused different correction results of TEP.The impacts of different extraction solution concentrations and shaking time of GX solution on the quantification of TEP were investigated based on the field sampling and laboratory analysis.The extraction capacities of H_(2)SO_(4) with different concentrations for Alcian Blue were distinct,but had limited effect on the final measuring result of TEP.The change of the standard curve slope came along with the variation of shaking time,which markedly altered the detection limit and calibration result,and the extended shaking time was in favor of the determination of low-concentration TEP.It was suggested that the extraction solution concentration,shaking time and filtration volume of standard solution are required to be well controlled and selected to obtain more accurate results for TEP with different concentrations.
基金partially funded by National Science Foundation of the United States(No.1012994)by California State University,Fullerton
文摘A new potential energy surface (PES) for the atmospheric formation of sulfuric acid from OH+SO2 is investigated using density functional theory and high-level ab initio molecular orbital theory. A pathway focused on the new PES assumes the reaction to take place between the radical complex SO3.HO2 and H2O. The unusual stability of SO3.HO2 is the principal basis of the new pathway, which has the same final outcome as the current reaction mechanism in the literature but it avoids the production and complete release of SO3. The entire reaction pathway is composed of three consecutive elementary steps: (1) HOSO2+O2-+SO3.HO2, (2) SO3.HO2+H20-+SO3·H2O·HO2, (3) SO3.H20.HO2-+H2SO4+HO2. All three steps have small energy barriers, under 10 kcal/rnol, and are exotherrnic, and the new pathway is there- fore favorable both kinetically and therrnodynarnically. As a key step of the reactions, step (3), HO2 serves as a bridge molecule for low-barrier hydrogen transfer in the hydrolysis of SO3. Two significant atmospheric implications are expected frorn the present study. First, SO3 is not released from the oxidation of SO2 by OH radical in the atmosphere. Second, the conversion of SO2 into sulfuric acid is weakly dependent on the humidity of air.
文摘A simple and general method for the synthesis of bi(acyl)disulfides is reported.Sulfur is allowed to react with sodium hydroxide to give sodium disulfide at 65℃ under PTC,which can react with acyl halides to afford bi(acyl)disulfides in good to excellent isolated yields.The effects of solvents and phase transfer catalysts are discussed.
基金Projects(11JJ3020,10JJ9015)supported by Hunan Provincial Natural Science Foundation of ChinaProject supported by the Construct Program of the Key Discipline in Hunan Province,China
文摘The oxysulfide La3NbS2O5 was synthesized by sulfurization using H2S and characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS) and field emission scanning electron microscopy (FE-SEM). The relationship between the sulfurization conditions and the photocatalytic activities for H2 evolution was investigated. Sulfurization method allowed for synthesis of La3NbS2O5 at much lower temperatures and significantly shortened reaction time of 1 h compared with conventional solid-state techniques. The particle morphologies were regular platelike with sizes of 0.1-0.6μm and smooth surfaces. The highest activity for H2 evolution was obtained at 1073 K for 1 h, which was about 1.83 times that of La3NbS2O5 prepared by solid-state method.
基金the Higher Education Commission (HEC) of Pakistan
文摘Field experiments were conducted at Cereal Crops Research Institute, Pirsabak, Nowshera, Pakistan, during winter 2003~2004; 2004~2005 to evaluate the effect of nitrogen; sulfur levels; methods of nitrogen application on canola (Brassica napus L. cv. Bulbul-98) under rainfed conditions. Four levels of S (0, 10, 20,; 30 kg/ha); three levels of N (40, 60,; 80 kg/ha); a control treatment with both nutrients at zero level were included in the experiments. Sulfur levels were applied at sowing while N levels were applied by three methods (100% soil application, 90% soil+10% foliar application,; 80% soil +20% foliar application). The experiments were laid out in randomized complete block (RCB) design having four replications. Oil content increased significantly up to 20 kg S/ha but further increase in S level did not enhance oil content. Glucosinolate content increased from 13.6 to 24.6 μmol/g as S rate was increased from 0 to 30 kg/ha. Protein content increased from 22.4% to 23.2% as S rate was increased from 0 to 20 kg/ha. Oil content responded negatively to the increasing N levels. The highest N level resulted in the highest values for protein (23.5%); glucosinolate (19.9 μmol/g) contents. Methods of N application had no significant impact on any parameters under study.
基金Yinyu Xiang is very grateful to the China Scholarship Council(CSC:No.201806950083)for his PhD scholarship。
文摘Lithium-sulfur(Li-S)batteries,although a promising candidate of next-generation energy storage devices,are hindered by some bottlenecks in their roadmap toward commercialization.The key challenges include solving the issues such as low utilization of active materials,poor cyclic stability,poor rate performance,and unsatisfactory Coulombic efficiency due to the inherent poor electrical and ionic conductivity of sulfur and its discharged products(e.g.,Li2S2 and Li_(2)S),dissolution and migration of polysulfide ions in the electrolyte,unstable solid electrolyte interphase and dendritic growth on an odes,and volume change in both cathodes and anodes.Owing to the high specific surface area,pore volume,low density,good chemical stability,and particularly multimodal pore sizes,hierarchical porous carbon(HPC)mate rials have received considerable attention for circumventing the above pro blems in Li-S batteries.Herein,recent progress made in the synthetic methods and deployment of HPC materials for various components including sulfur cathodes,separators and interlayers,and lithium anodes in Li-S batteries is presented and summarized.More importantly,the correlation between the structures(pore volume,specific surface area,degree of pores,and heteroatom-doping)of HPC and the electrochemical performances of Li-S batteries is elaborated.Finally,a discussion on the challenges and future perspectives associated with HPCs for Li-S batteries is provided.
文摘The research investigated the corrosion of the reinjection water system to ensure the safe production of the system.By analyzing the composition of the methanol-containing wastewater,the corrosion status of the injection water system was studied by the on-site materials 20#steel,Q235B steel and L316 steel for that the methanol-containing wastewater of a natural gas processing plant in northern Shaanxi had high acidity,Cl-and sulfide contents,salinity and corrosion.Then the grey system theory modeling software 3.0 was used to study the influence degree of various corrosion factors on the corrosion rate and depth of Q235B steel.The most important factors were determined,and countermeasures against corrosion were proposed.The results showed that L316 steel was more resistant to corrosion,and the corrosion rate was 0.0015 mm/a,which was less than the national standard(0.0760 mm/a).The maximum corrosion depth was 47.63μm,which was the lowest among the three materials.The corrosion rate and depth were the parent factors.Among the four factors of sulfide,Cl-,salinity and pH,grey relational degrees of sulfide were 0.75 and 0.80,respectively,which was the most important factor causing corrosion;using sulfur corrosion inhibitor protection method,TS-792C was selected by electrochemical method from three corrosion inhibitors.The impedance data simulation software ZSimpWin was used to simulate the equivalent circuit diagram,and the impedance of Q235B steel was the largest.The corrosion inhibition rate was up to 90.26%when corrosion rate was 0.0130 mm/a under the fitting of Tafel polarization curve,with the best anti-sulfur effect.At 80℃and a sulfide content of 300 mg/L,the corrosion rate of Q235B steel was less than 0.0760 mm/a.When the added amount was 100 mg/L,the corrosion current density and corrosion rate of the reinjection sewage was 0.462 mA/cm 2 and 0.0505 mm/a,both at the lowest values and with good temperature and sulfur resistance.
文摘A new experimental calibration was undertaken in this study to get a more reliable sphalerite-galena sulfur isotope geothermometer. The experimental conditions selected in study were very similar to those of natural hydrothermal solution. The high-precision SF6 method was used in sulfur isotope analyses. The obtained calibration curve for sulfur isotope fractionation between sphalerite and galena can be expressed with the equation 10001nαSp-Gn= 0.74×106T-2+0.08.
文摘Fifteen upland soils collected from the major arable areas in North China were used to assess the availability of soil sulfur (S) to plants in a pot experiment. Soils were extracted with various reagents and the extractable S was determined using turbidimetric method or inductively coupled plasma atomic emission spectrometry (ICP-AES), respectively. In addition, mineralizable organic S, organic S, N/S ratio, sulfur availability index (SAI) and available sulfur correction value (ASC) in soils were also determined. The S amount extracted by 1.5 g L-1 CaCl2 was nearly equivalent to that by 0.25 mol L-1 KCl (40 ℃), and both of them were slightly smaller than that by 0.01 mol L-1 Ca(H2PO4)2 solution, as measured by turbidimetric method or ICP-AES. The extractable S measured by turbidimetric method was consistently smaller than that by ICP-AES. All methods tested except that for organic S and N/S ratio produced satisfactory results in the regression analyses of the relationships between the amounts of S extracted and plant dry matter weight and S uptake in the pot experiment. In general, 0.01 mol L-1 Ca (H2PO4) 2-extracted S determined by ICP-AES or turbidimetric method and 0.25 mol L-1 KCl(40℃)-extracted S determined by ICP-AES appeared to be the best indicators for evaluation of soil available S.
文摘“High nutrient, low chlorophyll (HNLC)” regions were created by locking iron into sedimentary iron sulfides with hydrogen sulfide available from volcanic eruptions in surrounding oceans. Appropriate locations and deployment methods for the iron fertilization were far from volcanoes, earthquakes and boundaries of tectonic plates to reduce the chance of iron-locking by volcanic sulfur compounds. The appropriate locations for the large-scale iron fertilization are proposed as Shag Rocks in South Georgia and the Bransfield Strait in Drake Passage in the Southern Ocean due to their high momentum flux causing efficient iron deployment. The iron (Fe) replete compounds, consisting of natural clay, volcanic ash, agar, N</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-size:12px;font-family:Verdana;">-fixing mucilaginous cyanobacteria, carbon black, biodegradable plastic foamed polylactic acid, fine wood chip, and iron-reducing marine bacterium, are deployed in the ocean to stay within a surface depth of 100</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-size:12px;font-family:Verdana;"><span style="font-size:12px;font-family:Verdana;"><span style="font-family:Verdana;font-size:12px;">m for phytoplankton digestion. The deployment method of Fe-replete composite with a duration of at least several years for the successful iron fertilization, is configured to be on the streamline of the Antarctic Circumpolar Current (ACC). This will result in high momentum flux for its efficient dispersion on the ocean surface where diatom, copepods, krill and humpback whale stay together (~100</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-size:12px;font-family:Verdana;">m). Humpback whales are proposed as a biomarker for the successful iron fertilization in large-scale since humpback whales feed on krill, which in turn feed on cockpods and diatoms. The successful large-scale iron fertilization may be indicated by the return of the humpback whales if they could not be found for a long period before the iron fertilization. On-line monitoring for the successful iron fertilization focuses on the simultaneous changes of the following two groups;the increase concentration group (chlorophyll, O</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-size:12px;font-family:Verdana;">, Dissolved Oxygen (DO), Di Methyl Sulfide (DMS)) and the decrease concentration group (nitrate, phosphate, silicate, CO</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-size:12px;font-family:Verdana;">, Dissolved CO</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-size:12px;font-family:Verdana;"> (DCO</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-size:12px;font-family:Verdana;">)). The monitoring of chlorophyll-</span><i><span style="font-size:12px;font-family:Verdana;">a</span></i><span style="font-size:12px;font-family:Verdana;">, nitrate phosphate, and silicate concentrations after deploying the Fe-replete complex is carried out throughout the day and night for the accurate measurement of algal blooms.