Four new phenolic amides,4-O-methylgrossamide(1),(E)-2-(4,5-dihydroxy-2-{3-[(4-hydrox-yphenethyl)amino]-3-oxopropyl}-phenyl)-3-(4-hydroxy-3-methoxyphenyl)-N-(4-hydroxyphenethyl)acryl-amide(2),(Z)-lyciumamide C(3),(Z)-...Four new phenolic amides,4-O-methylgrossamide(1),(E)-2-(4,5-dihydroxy-2-{3-[(4-hydrox-yphenethyl)amino]-3-oxopropyl}-phenyl)-3-(4-hydroxy-3-methoxyphenyl)-N-(4-hydroxyphenethyl)acryl-amide(2),(Z)-lyciumamide C(3),(Z)-thoreliamide B(4),together with thirteen known phenolic amides were identified from the stem of Lycium barbarum.The structures of the new compounds were determined by spectroscopic methods.All compounds were evaluated for their anti-cancer activities against human glioma stem cell lines.展开更多
Objective: To isolate the phenolic amides from the dried bulbs of Allium chinense and investigate their myocardium protective activities.Methods: The chemical constituents were isolated and purified by combining with ...Objective: To isolate the phenolic amides from the dried bulbs of Allium chinense and investigate their myocardium protective activities.Methods: The chemical constituents were isolated and purified by combining with silica gel column,Sephadex LH-20 column, HPLC and other chromatography techniques. Their structures were elucidated by NMR techniques and mass spectrometry. The isolated compounds were evaluated to determine their protective effect for myocardium cells in vitro.Results: Two new phenolic amides, namely, alichinemide Ⅰ(1) and alichinemide Ⅱ(2), and six konwn amides were isolated from the dried bulbs of A. chinense. The structures of compounds 3–8 were identified as 3-indolcarbaldehyde(3), 1-(2-aminophenyl)urea(4), 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylic acid(5), N-trans-feruloyltyramine(6), N-trans-p-coumaroyltyramine(7), and N-(3,4-dimethoxyphenethyl) acetamide(8). Compound 3(50 μmol/L) showed significant inhibitory effect on the damage of H9c2 myocardial cells induced by H2O2in vitro.Conclusion: Compounds 1 and 2 were new phenolic amides. Compound 3 could be one of the potential myocardium protective constituents of A. chinense.展开更多
基金The authors are grateful to agricultural com-prehensive development project of science and technology in Ningxia province(Research on Chinese wolfberry active substances and health products)STS project of Chinese Academy of Sciences for the financial support.
文摘Four new phenolic amides,4-O-methylgrossamide(1),(E)-2-(4,5-dihydroxy-2-{3-[(4-hydrox-yphenethyl)amino]-3-oxopropyl}-phenyl)-3-(4-hydroxy-3-methoxyphenyl)-N-(4-hydroxyphenethyl)acryl-amide(2),(Z)-lyciumamide C(3),(Z)-thoreliamide B(4),together with thirteen known phenolic amides were identified from the stem of Lycium barbarum.The structures of the new compounds were determined by spectroscopic methods.All compounds were evaluated for their anti-cancer activities against human glioma stem cell lines.
基金supported by Natural Science Foundation of China (No. 81973191)Shanghai Natural Science Fund (No. 19ZR1428100)+1 种基金project supported by the Department of Science and Technology of Guizhou (No. [2018] 2831)the Horizontal Research Project of Shanghai Jiao Tong University (Nos. SA1700111, SA1700118)。
文摘Objective: To isolate the phenolic amides from the dried bulbs of Allium chinense and investigate their myocardium protective activities.Methods: The chemical constituents were isolated and purified by combining with silica gel column,Sephadex LH-20 column, HPLC and other chromatography techniques. Their structures were elucidated by NMR techniques and mass spectrometry. The isolated compounds were evaluated to determine their protective effect for myocardium cells in vitro.Results: Two new phenolic amides, namely, alichinemide Ⅰ(1) and alichinemide Ⅱ(2), and six konwn amides were isolated from the dried bulbs of A. chinense. The structures of compounds 3–8 were identified as 3-indolcarbaldehyde(3), 1-(2-aminophenyl)urea(4), 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylic acid(5), N-trans-feruloyltyramine(6), N-trans-p-coumaroyltyramine(7), and N-(3,4-dimethoxyphenethyl) acetamide(8). Compound 3(50 μmol/L) showed significant inhibitory effect on the damage of H9c2 myocardial cells induced by H2O2in vitro.Conclusion: Compounds 1 and 2 were new phenolic amides. Compound 3 could be one of the potential myocardium protective constituents of A. chinense.