t In this paper,a facile strategy is proposed to controllably synthesize mesoporous Li_(4)Ti_(5)O_(12)/C nanocomposite embedded in graphene matrix as lithium-ion battery anode via the co-assembly of Li_(4)Ti_(5)O_(12)...t In this paper,a facile strategy is proposed to controllably synthesize mesoporous Li_(4)Ti_(5)O_(12)/C nanocomposite embedded in graphene matrix as lithium-ion battery anode via the co-assembly of Li_(4)Ti_(5)O_(12)(LTO)precursor,GO,and phenolic resin.The obtained composites,which consists of a LTO core,a phenolic-resin-based carbon shell,and a porous frame constructed by rGO,can be denoted as LTO/C/rGO and presents a hierarchical structure.Owing to the advantages of the hierarchical structure,including a high surface area and a high electric conductivity,the mesoporous LTO/C/rGO composite exhibits a greatly improved rate capability as the anode material in contrast to the conventional LTO electrode.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2016YFB0101312)the National Natural Science Foundation of China(Grant No.21975157).
文摘t In this paper,a facile strategy is proposed to controllably synthesize mesoporous Li_(4)Ti_(5)O_(12)/C nanocomposite embedded in graphene matrix as lithium-ion battery anode via the co-assembly of Li_(4)Ti_(5)O_(12)(LTO)precursor,GO,and phenolic resin.The obtained composites,which consists of a LTO core,a phenolic-resin-based carbon shell,and a porous frame constructed by rGO,can be denoted as LTO/C/rGO and presents a hierarchical structure.Owing to the advantages of the hierarchical structure,including a high surface area and a high electric conductivity,the mesoporous LTO/C/rGO composite exhibits a greatly improved rate capability as the anode material in contrast to the conventional LTO electrode.