The aim of the present work is to assess the value of Detarium Senegalense by determining the content of total phenols, total flavonoids and total anthocyanins, and by evaluating the free radical scavenging activity o...The aim of the present work is to assess the value of Detarium Senegalense by determining the content of total phenols, total flavonoids and total anthocyanins, and by evaluating the free radical scavenging activity of Detarium Senegalense extracts. For this purpose, sequential extraction using solvents of increasing polarity was essential. The various extracts obtained underwent phytochemical and biochemical analyses. Phytochemical screening revealed the presence of flavonoids, alkaloids, tannins, polyphenols, anthocyanins and steroids/terpenes. Quantitative analysis of total polyphenols, total flavonoids and total anthocyanins yielded the following results: total flavonoids (0.803 ± 0029 mg EQ/100g P for acetone extract of roots and 0.871 ± 0.401 mg EQ/100g P for methanol extract of leaves);total polyphenols (23.298 ± 12.68 mg EAG/100g P for acetone extract of roots and 24.69 ± 0.49 401 mg EAG/100g P for methanol extract of leaves);total monomeric anthocyanins (44.697 ± 0.939 mg EC3G/100g P and 16.699 ± 0.193 mg EC3G/100g P respectively for acetone and methanol extracts of stem bark). DPPH free radical scavenging activity was 1.674 ± 0.023 mg/mL for the acetone extract and 0.934 ± 0.24 mg/mL for the methanol extract of roots. .展开更多
Polyphenols were obtained from the natural dried Lonicerae flos by ultrasound-assisted extraction with ethanol as the solvent.Single factor experiment and response surface methodology were employed to optimize the ext...Polyphenols were obtained from the natural dried Lonicerae flos by ultrasound-assisted extraction with ethanol as the solvent.Single factor experiment and response surface methodology were employed to optimize the extraction conditions.Ultra-performance liquid chromatrography(UPLC)-tandem mass spectrometry(MS/MS)was employed to identify polyphenols based on the plant widely targeted metabolomics database in a qualitative and quantitative manner.The results showed that the optimal extraction conditions for total phenols from Lonicerae flos were ultrasound-assisted extraction with a solid-to-liquid ratio of 10∶1 g/mL and 57%ethanol at 70 W and 60°C for 11 min.The yield of total phenols extracted under the optimal conditions reached 71.08 mg/g.The phenols in Lonicerae flos were mainly chlorogenic acid isomers,and the flavonoids were mainly nobiletin,galuteolin,and homoarbutin.展开更多
A comprehensive experimental design was developed to determine suitable conditions(volume, percentage of solvent, extraction temperature) for the ethanol extraction of phenolic compounds from ten tropical woody plants...A comprehensive experimental design was developed to determine suitable conditions(volume, percentage of solvent, extraction temperature) for the ethanol extraction of phenolic compounds from ten tropical woody plants. Wenge, angelim vermelho, zebrano, merbau,tigerwood, angelim pedra, jatoba, angelim amargoso,massaranduba, and doussie woods were used in experiments. The effects of three independent variables and their interactions on the yields of cinnamic and benzoic acid derivates were analyzed using UHPLC-PDA. The most significant parameters were found to be solvent percentage,extraction volume, and extraction temperature. Optimal conditions for the extraction of phenolic compound contents were an 80℃ extraction temperature, a 30 mL extraction volume, and the use of pure water as the extraction solvent. The tested species of woods contained mainly cinnamic acid derivates. Water extracts after hydrolysis contained greater amounts of cinnamic acid derivates than those extracts from non-hydrolyzed material.The total phenolics content was highest in water extracts of tigerwood, wenge and merbau;however, the extract of merbau wood was a stronger radical scavenger in ABTS?áassays: 34.11 ± 0.02 mM Trolox equivalents per g of dry extract. The main compounds possessing antioxidant activity in the extracts of vermelho wood assessed by UHPLC analysis were hydroxycinnamic acids.展开更多
Phenolic compounds present in medicinal and edible plants such as flavonoids, chalcones, coumarins, quinones, and phenolic acids. The antioxidant potential of phenolic compounds shows potent activities for cancer prev...Phenolic compounds present in medicinal and edible plants such as flavonoids, chalcones, coumarins, quinones, and phenolic acids. The antioxidant potential of phenolic compounds shows potent activities for cancer prevention and its treatment. From a green chemistry point of view, cascade (tandem) reactions are ideal techniques in organic synthesis for building complex structures. Cascade techniques are sometimes observed in coupling reactions under mild conditions with a tolerance of multifunctional groups. It will be interesting to find a cascade type reaction to synthesize polyphenolic ethers. This research project achieves a new cross-coupling method for establishing polyphenolic ethers from mixed phenols and halides in the presence of palladium catalyst in moderate to good yields.展开更多
A series of Pd catalysts were prepared on different supports(Fe2O3,SiO2,ZnO,MgO,Al2O3,carbon,and Amberlyst-45) and used in the selective hydrogenation of phenol to cyclohexanone in water.The Amberlyst-45 supported P...A series of Pd catalysts were prepared on different supports(Fe2O3,SiO2,ZnO,MgO,Al2O3,carbon,and Amberlyst-45) and used in the selective hydrogenation of phenol to cyclohexanone in water.The Amberlyst-45 supported Pd catalyst(Pd/A-45) was highly active and selective under mild conditions(40-100 ℃,0.2-1 MPa),giving a selectivity of cyclohexanone higher than 89%even at complete conversion of phenol.Experiments with different Pd loadings(or different particle sizes) confirmed that the formation of cyclohexanone was a structure sensitive reaction,and Pd particles of12-14 nm on Amberlyst-45 gave better selectivity and stability.展开更多
The development of new catalytic techniques for wastewater treatment has long attracted much attention from industrial and academic communities.However,because of catalyst leaching during degradation,catalysts can be ...The development of new catalytic techniques for wastewater treatment has long attracted much attention from industrial and academic communities.However,because of catalyst leaching during degradation,catalysts can be short lived,and therefore expensive,and unsuitable for use in wastewater treatment.In this work,we developed a bimetallic CuO-Co3O4@γ-Al2O3 catalyst for phenol degradation with bicarbonate-activated H2O2.The weakly basic environment provided by the bicarbonate buffer greatly suppresses leaching of active Cu and Co metal ions from the catalyst.X-ray diffraction and X-ray photoelectron spectroscopy results showed interactions between Cu and Co ions in the CuO-Co3O4@γ-Al2O3 catalyst,and these improve the catalytic activity in phenol degradation.Mechanistic studies using different radical scavengers showed that superoxide and hydroxyl radicals both played significant roles in phenol degradation,whereas singlet oxygen was less important.展开更多
文摘The aim of the present work is to assess the value of Detarium Senegalense by determining the content of total phenols, total flavonoids and total anthocyanins, and by evaluating the free radical scavenging activity of Detarium Senegalense extracts. For this purpose, sequential extraction using solvents of increasing polarity was essential. The various extracts obtained underwent phytochemical and biochemical analyses. Phytochemical screening revealed the presence of flavonoids, alkaloids, tannins, polyphenols, anthocyanins and steroids/terpenes. Quantitative analysis of total polyphenols, total flavonoids and total anthocyanins yielded the following results: total flavonoids (0.803 ± 0029 mg EQ/100g P for acetone extract of roots and 0.871 ± 0.401 mg EQ/100g P for methanol extract of leaves);total polyphenols (23.298 ± 12.68 mg EAG/100g P for acetone extract of roots and 24.69 ± 0.49 401 mg EAG/100g P for methanol extract of leaves);total monomeric anthocyanins (44.697 ± 0.939 mg EC3G/100g P and 16.699 ± 0.193 mg EC3G/100g P respectively for acetone and methanol extracts of stem bark). DPPH free radical scavenging activity was 1.674 ± 0.023 mg/mL for the acetone extract and 0.934 ± 0.24 mg/mL for the methanol extract of roots. .
基金Supported by Agricultural Science and Technology Innovation Fund Project of Hunan Province(2022CX87)Huaihua Municipal Institute of Science and Technology Cooperation Project(2022N1203)Science and Technology Talent Lifting Project of Hunan Province—Training Plan for Young and Middle-aged Scholars(2023TJ-Z01)。
文摘Polyphenols were obtained from the natural dried Lonicerae flos by ultrasound-assisted extraction with ethanol as the solvent.Single factor experiment and response surface methodology were employed to optimize the extraction conditions.Ultra-performance liquid chromatrography(UPLC)-tandem mass spectrometry(MS/MS)was employed to identify polyphenols based on the plant widely targeted metabolomics database in a qualitative and quantitative manner.The results showed that the optimal extraction conditions for total phenols from Lonicerae flos were ultrasound-assisted extraction with a solid-to-liquid ratio of 10∶1 g/mL and 57%ethanol at 70 W and 60°C for 11 min.The yield of total phenols extracted under the optimal conditions reached 71.08 mg/g.The phenols in Lonicerae flos were mainly chlorogenic acid isomers,and the flavonoids were mainly nobiletin,galuteolin,and homoarbutin.
基金supported by the project‘Crosssectional study programmes innovation with respect to general knowledge courses at the Faculty of Forestry and Wood Technology,Mendel University in Brno,Registry No.CZ.1.07/2.2.00/28.0021 with the contribution of the EU funds and the state budget of the Czech Republic。
文摘A comprehensive experimental design was developed to determine suitable conditions(volume, percentage of solvent, extraction temperature) for the ethanol extraction of phenolic compounds from ten tropical woody plants. Wenge, angelim vermelho, zebrano, merbau,tigerwood, angelim pedra, jatoba, angelim amargoso,massaranduba, and doussie woods were used in experiments. The effects of three independent variables and their interactions on the yields of cinnamic and benzoic acid derivates were analyzed using UHPLC-PDA. The most significant parameters were found to be solvent percentage,extraction volume, and extraction temperature. Optimal conditions for the extraction of phenolic compound contents were an 80℃ extraction temperature, a 30 mL extraction volume, and the use of pure water as the extraction solvent. The tested species of woods contained mainly cinnamic acid derivates. Water extracts after hydrolysis contained greater amounts of cinnamic acid derivates than those extracts from non-hydrolyzed material.The total phenolics content was highest in water extracts of tigerwood, wenge and merbau;however, the extract of merbau wood was a stronger radical scavenger in ABTS?áassays: 34.11 ± 0.02 mM Trolox equivalents per g of dry extract. The main compounds possessing antioxidant activity in the extracts of vermelho wood assessed by UHPLC analysis were hydroxycinnamic acids.
文摘Phenolic compounds present in medicinal and edible plants such as flavonoids, chalcones, coumarins, quinones, and phenolic acids. The antioxidant potential of phenolic compounds shows potent activities for cancer prevention and its treatment. From a green chemistry point of view, cascade (tandem) reactions are ideal techniques in organic synthesis for building complex structures. Cascade techniques are sometimes observed in coupling reactions under mild conditions with a tolerance of multifunctional groups. It will be interesting to find a cascade type reaction to synthesize polyphenolic ethers. This research project achieves a new cross-coupling method for establishing polyphenolic ethers from mixed phenols and halides in the presence of palladium catalyst in moderate to good yields.
基金supported by the National Natural Science Foundation of China(21473155,21273198,21073159)the Natural Science Foundation of Zhejiang Province(LZ12B03001)~~
文摘A series of Pd catalysts were prepared on different supports(Fe2O3,SiO2,ZnO,MgO,Al2O3,carbon,and Amberlyst-45) and used in the selective hydrogenation of phenol to cyclohexanone in water.The Amberlyst-45 supported Pd catalyst(Pd/A-45) was highly active and selective under mild conditions(40-100 ℃,0.2-1 MPa),giving a selectivity of cyclohexanone higher than 89%even at complete conversion of phenol.Experiments with different Pd loadings(or different particle sizes) confirmed that the formation of cyclohexanone was a structure sensitive reaction,and Pd particles of12-14 nm on Amberlyst-45 gave better selectivity and stability.
基金supported by the National Natural Science Foundation of China(21273086)Chutian Scholar Foundation from Hubei Province,China~~
文摘The development of new catalytic techniques for wastewater treatment has long attracted much attention from industrial and academic communities.However,because of catalyst leaching during degradation,catalysts can be short lived,and therefore expensive,and unsuitable for use in wastewater treatment.In this work,we developed a bimetallic CuO-Co3O4@γ-Al2O3 catalyst for phenol degradation with bicarbonate-activated H2O2.The weakly basic environment provided by the bicarbonate buffer greatly suppresses leaching of active Cu and Co metal ions from the catalyst.X-ray diffraction and X-ray photoelectron spectroscopy results showed interactions between Cu and Co ions in the CuO-Co3O4@γ-Al2O3 catalyst,and these improve the catalytic activity in phenol degradation.Mechanistic studies using different radical scavengers showed that superoxide and hydroxyl radicals both played significant roles in phenol degradation,whereas singlet oxygen was less important.