There is growing evidence that long-term central nervous system(CNS)inflammation exacerbates secondary deterioration of brain structures and functions and is one of the major determinants of disease outcome and progre...There is growing evidence that long-term central nervous system(CNS)inflammation exacerbates secondary deterioration of brain structures and functions and is one of the major determinants of disease outcome and progression.In acute CNS injury,brain microglia are among the first cells to respond and play a critical role in neural repair and regeneration.However,microglial activation can also impede CNS repair and amplify tissue damage,and phenotypic transformation may be responsible for this dual role.Mesenchymal stem cell(MSC)-derived exosomes(Exos)are promising therapeutic agents for the treatment of acute CNS injuries due to their immunomodulatory and regenerative properties.MSC-Exos are nanoscale membrane vesicles that are actively released by cells and are used clinically as circulating biomarkers for disease diagnosis and prognosis.MSC-Exos can be neuroprotective in several acute CNS models,including for stroke and traumatic brain injury,showing great clinical potential.This review summarized the classification of acute CNS injury disorders and discussed the prominent role of microglial activation in acute CNS inflammation and the specific role of MSC-Exos in regulating pro-inflammatory microglia in neuroinflammatory repair following acute CNS injury.Finally,this review explored the potential mechanisms and factors associated with MSCExos in modulating the phenotypic balance of microglia,focusing on the interplay between CNS inflammation,the brain,and injury aspects,with an emphasis on potential strategies and therapeutic interventions for improving functional recovery from early CNS inflammation caused by acute CNS injury.展开更多
Among central nervous system-associated malignancies,glioblastoma(GBM)is the most common and has the highest mortality rate.The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently le...Among central nervous system-associated malignancies,glioblastoma(GBM)is the most common and has the highest mortality rate.The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently lead to tumor recurrence and sudden relapse in patients treated with temozolomide.In precision medicine,research on GBM treatment is increasingly focusing on molecular subtyping to precisely characterize the cellular and molecular heterogeneity,as well as the refractory nature of GBM toward therapy.Deep understanding of the different molecular expression patterns of GBM subtypes is critical.Researchers have recently proposed tetra fractional or tripartite methods for detecting GBM molecular subtypes.The various molecular subtypes of GBM show significant differences in gene expression patterns and biological behaviors.These subtypes also exhibit high plasticity in their regulatory pathways,oncogene expression,tumor microenvironment alterations,and differential responses to standard therapy.Herein,we summarize the current molecular typing scheme of GBM and the major molecular/genetic characteristics of each subtype.Furthermore,we review the mesenchymal transition mechanisms of GBM under various regulators.展开更多
Objective To examine the clinical phenotype and genetic deficiencies present in Chinese aniridia families with PAX6 haplotype deficiency.Methods A comprehensive questionnaire and ophthalmological assessments were admi...Objective To examine the clinical phenotype and genetic deficiencies present in Chinese aniridia families with PAX6 haplotype deficiency.Methods A comprehensive questionnaire and ophthalmological assessments were administered to both affected patients and unaffected relatives.The clinical feature analysis included the evaluation of visual acuity,intraocular pressure,slit-lamp anterior segment examination,fundus photography,and spectral domain optical coherence tomography.To identify the mutation responsible for aniridia,targeted next-generation sequencing was used as a beneficial technique.Results A total of 4 mutations were identified,consisting of two novel frameshift mutations(c.314delA,p.K105Sfs*33 and c.838_845dup AACACACC,p.S283Tfs*85),along with two recurring nonsense mutations(c.307C>T,p.R103X and c.619A>T,p.K207*).Complete iris absence,macular foveal hypoplasia,and nystagmus were consistent in these PAX6 haplotype-deficient Chinese aniridia families,while corneal lesions,cataracts,and glaucoma exhibited heterogeneity both among the families and within the same family.Conclusion In our study,two novel PAX6 mutations associated with aniridia were identified in Chinese families,which expanded the phenotypic and genotypic spectrum of PAX6 mutations.We also analyzed the clinical characteristics of PAX6 haplotype deficiency in Chinese aniridia families.展开更多
●AIM:To establish a classification for congenital cataracts that can facilitate individualized treatment and help identify individuals with a high likelihood of different visual outcomes.●METHODS:Consecutive patient...●AIM:To establish a classification for congenital cataracts that can facilitate individualized treatment and help identify individuals with a high likelihood of different visual outcomes.●METHODS:Consecutive patients diagnosed with congenital cataracts and undergoing surgery between January 2005 and November 2021 were recruited.Data on visual outcomes and the phenotypic characteristics of ocular biometry and the anterior and posterior segments were extracted from the patients’medical records.A hierarchical cluster analysis was performed.The main outcome measure was the identification of distinct clusters of eyes with congenital cataracts.●RESULTS:A total of 164 children(299 eyes)were divided into two clusters based on their ocular features.Cluster 1(96 eyes)had a shorter axial length(mean±SD,19.44±1.68 mm),a low prevalence of macular abnormalities(1.04%),and no retinal abnormalities or posterior cataracts.Cluster 2(203 eyes)had a greater axial length(mean±SD,20.42±2.10 mm)and a higher prevalence of macular abnormalities(8.37%),retinal abnormalities(98.52%),and posterior cataracts(4.93%).Compared with the eyes in Cluster 2(57.14%),those in Cluster 1(71.88%)had a 2.2 times higher chance of good best-corrected visual acuity[<0.7 logMAR;OR(95%CI),2.20(1.25–3.81);P=0.006].●CONCLUSION:This retrospective study categorizes congenital cataracts into two distinct clusters,each associated with a different likelihood of visual outcomes.This innovative classification may enable the personalization and prioritization of early interventions for patients who may gain the greatest benefit,thereby making strides toward precision medicine in the field of congenital cataracts.展开更多
Glass catfish(Kryptopterus vitreolus)are notable in the aquarium trade for their highly transparent body pattern.This transparency is due to the loss of most reflective iridophores and light-absorbing melanophores in ...Glass catfish(Kryptopterus vitreolus)are notable in the aquarium trade for their highly transparent body pattern.This transparency is due to the loss of most reflective iridophores and light-absorbing melanophores in the main body,although certain black and silver pigments remain in the face and head.To date,however,the molecular mechanisms underlying this transparent phenotype remain largely unknown.To explore the genetic basis of this transparency,we constructed a chromosome-level haplotypic genome assembly for the glass catfish,encompassing 32 chromosomes and 23344 protein-coding genes,using PacBio and Hi-C sequencing technologies and standard assembly and annotation pipelines.Analysis revealed a premature stop codon in the putative albinism-related tyrp1b gene,encoding tyrosinase-related protein 1,rendering it a nonfunctional pseudogene.Notably,a synteny comparison with over 30 other fish species identified the loss of the endothelin-3(edn3b)gene in the glass catfish genome.To investigate the role of edn3b,we generated edn3b^(−/−)mutant zebrafish,which exhibited a remarkable reduction in black pigments in body surface stripes compared to wild-type zebrafish.These findings indicate that edn3b loss contributes to the transparent phenotype of the glass catfish.Our high-quality chromosome-scale genome assembly and identification of key genes provide important molecular insights into the transparent phenotype of glass catfish.These findings not only enhance our understanding of the molecular mechanisms underlying transparency in glass catfish,but also offer a valuable genetic resource for further research on pigmentation in various animal species.展开更多
Objective:Some patients exhibit septic symptoms following laparoscopic surgery,leading to a poor prognosis.Effective clinical subphenotyping is critical for guiding tailored therapeutic strategies in these cases.By id...Objective:Some patients exhibit septic symptoms following laparoscopic surgery,leading to a poor prognosis.Effective clinical subphenotyping is critical for guiding tailored therapeutic strategies in these cases.By identifying predisposing factors for postoperative sepsis,clinicians can implement targeted interventions,potentially improving outcomes.This study outlines a workflow for the subphenotype methodology in the context of laparoscopic surgery,along with its practical application.Methods:This study utilized data routinely available in clinical case systems,enhancing the applicability of our findings.The data included vital signs,such as respiratory rate,and laboratory measures,such as blood sodium levels.The process of categorizing clinical routine data involved technical complexities.A correlation heatmap was used to visually depict the relationships between variables.Ordering points were used to identify the clustering structure and combined with Consensus K clustering methods to determine the optimal categorization.Results:Our study highlighted the intricacies of identifying clinical subphenotypes following laparoscopic surgery,and could thus serve as a valuable resource for clinicians and researchers seeking to explore disease heterogeneity in clinical settings.By simplifying complex methodologies,we aimed to bridge the gap between technical expertise and clinical application,fostering an environment where professional medical knowledge is effectively utilized in subphenotyping research.Conclusion:This tutorial could primarily serve as a guide for beginners.A variety of clustering approaches were explored,and each step in the process contributed to a comprehensive understanding of clinical subphenotypes.展开更多
BACKGROUND Liver cirrhosis is a progressive hepatic disease whose immunological basis has attracted increasing attention.However,it remains unclear whether a concrete causal association exists between immunocyte pheno...BACKGROUND Liver cirrhosis is a progressive hepatic disease whose immunological basis has attracted increasing attention.However,it remains unclear whether a concrete causal association exists between immunocyte phenotypes and liver cirrhosis.AIM To explore the concrete causal relationships between immunocyte phenotypes and liver cirrhosis through a mendelian randomization(MR)study.METHODS Data on 731 immunocyte phenotypes were obtained from genome-wide assoc-iation studies.Liver cirrhosis data were derived from the Finn Gen dataset,which included 214403 individuals of European ancestry.We used inverse variable weighting as the primary analysis method to assess the causal relationship.Sensitivity analyses were conducted to evaluate heterogeneity and horizontal pleiotropy.RESULTS The MR analysis demonstrated that 11 immune cell phenotypes have a positive association with liver cirrhosis[P<0.05,odds ratio(OR)>1]and that 9 immu-nocyte phenotypes were negatively correlated with liver cirrhosis(P<0.05,OR<1).Liver cirrhosis was positively linked to 9 immune cell phenotypes(P<0.05,OR>1)and negatively linked to 10 immune cell phenotypes(P<0.05;OR<1).None of these associations showed heterogeneity or horizontally pleiotropy(P>0.05).CONCLUSION This bidirectional two-sample MR study demonstrated a concrete causal association between immunocyte phenotypes and liver cirrhosis.These findings offer new directions for the treatment of liver cirrhosis.展开更多
Background: In Vitro Fertilization/Intracytoplasmic Sperm Injection (IVF/ICSI) represents the final step in the management of Polycystic Ovarian Syndrome (PCOS). Our objective was to study the association between PCOS...Background: In Vitro Fertilization/Intracytoplasmic Sperm Injection (IVF/ICSI) represents the final step in the management of Polycystic Ovarian Syndrome (PCOS). Our objective was to study the association between PCOS phenotypes and IVF/ICSI results in women admitted to Gynaecological Endoscopic Surgery and Human Reproductive Teaching Hospital (CHRACERH). Material and Method: We carried out a cohort study with historical-prospective data collection over a period of seven years (January 2016 to March 2023) at Chracerh. PCOS patients were subdivided into 4 subgroups A, B, C and D. Results: We recruited 128 patients including 64 PCOS patients divided into four phenotypes and 64 non-PCOS patients constituting the control group. Phenotype D without hyperandrogenism had used the lowest dose of gonadotropins, i.e. 1939.7 ± 454.3 IU, and had produced a greater quantity of estradiol on the day ovulation was triggered (6529.8 ± 4324.8 ng/ml). The average number of punctured follicles and mature oocytes were higher in the phenotype D group. Ovarian hyperstimulation syndrome (OHSS) occurred mainly in phenotype D (3/35), with an estimated prevalence of 2.3%. The fertilization rate seemed lower in the hyperandrogenic phenotypes A, B, C compared to the group without hyperandrogenism without significant difference (p = 0.461). The biological pregnancy rate and live birth rate were comparable between the different groups. Conclusion: Phenotype D used less dose of gonadotropins. Biological pregnancy and live birth rates were comparable between the different phenotypes.展开更多
Automatic collecting of phenotypic information from plants has become a trend in breeding and smart agriculture.Targeting mature soybean plants at the harvesting stage,which are dense and overlapping,we have proposed ...Automatic collecting of phenotypic information from plants has become a trend in breeding and smart agriculture.Targeting mature soybean plants at the harvesting stage,which are dense and overlapping,we have proposed the SPP-extractor(soybean plant phenotype extractor)algorithm to acquire phenotypic traits.First,to address the mutual occultation of pods,we augmented the standard YOLOv5s model for target detection with an additional attention mechanism.The resulting model could accurately identify pods and stems and could count the entire pod set of a plant in a single scan.Second,considering that mature branches are usually bent and covered with pods,we designed a branch recognition and measurement module combining image processing,target detection,semantic segmentation,and heuristic search.Experimental results on real plants showed that SPP-extractor achieved respective R^(2) scores of 0.93–0.99 for four phenotypic traits,based on regression on manual measurements.展开更多
Previous study revealed that ferritin heavy chain-1(FTH1)could regulate ferritinophagy and affect intracellular Fe^(+)content in various tumors,while its N6-methyladenosine(m6A)RNA methylation was closely related the ...Previous study revealed that ferritin heavy chain-1(FTH1)could regulate ferritinophagy and affect intracellular Fe^(+)content in various tumors,while its N6-methyladenosine(m6A)RNA methylation was closely related the prognosis of ovarian cancer patients.However,little is known about the role of FTH1 m6A methylation in ovarian cancer(OC)and its possible action mechanisms.In this study we constructed FTH1 m6A methylation regulatory pathway(LncRNA CACNA1G-AS1/IGF2BP1)according to related bioinformatics analysis and research,through clinical sample detections we found that these pathway regulatory factors were significantly up-regulated in ovarian cancer tissues,and their expression levels were closely related to the malignant phenotype of ovarian cancer.In vitro cell experiments showed that LncRNA CACNA1G-AS1 could up-regulate FTH1 expression through IGF2BP1 axis,thus inhibited ferroptosis by regulating ferritinophagy,and finally promoted proliferation and migration in ovarian cancer cells.Tumor-bearing mice studies showed that the knock-down of LncRNA CACNA1G-AS1 could inhibited the tumorigenesis of ovarian cancer cells in vivo condition.Our results demonstrated that LncRNA CACNA1G-AS1 could promote the malignant phenotypes of ovarian cancer cells through FTH1-IGF2BP1 regulated ferroptosis.展开更多
Chronic kidney disease(CKD)patients face an unacceptably high morbidity and mortality,mainly from cardiovascular diseases.Diabetes mellitus,arterial hypertension and dyslipidemia are highly prevalent in CKD patients.E...Chronic kidney disease(CKD)patients face an unacceptably high morbidity and mortality,mainly from cardiovascular diseases.Diabetes mellitus,arterial hypertension and dyslipidemia are highly prevalent in CKD patients.Established therapeutic protocols for the treatment of diabetes mellitus,arterial hypertension,and dyslipidemia are not as effective in CKD patients as in the general population.The role of non-traditional risk factors(RF)has gained interest in the last decades.These entail the deranged clinical spectrum of secondary hyperparathyroidism involving vascular and valvular calcification,under the term“CKDmineral and bone disorder”(CKD-MBD),uremia per se,inflammation and oxidative stress.Each one of these non-traditional RF have been addressed in various study designs,but the results do not exhibit any applied clinical benefit for CKD-patients.The“crusade”against cardiorenal morbidity and mortality in CKD-patients is in some instances,derailed.We propose a therapeutic paradigm advancing from isolated treatment targets,as practiced today,to precision medicine involving patient phenotypes with distinct underlying pathophysiology.In this regard we propose two steps,based on current stratification management of corona virus disease-19 and sepsis.First,select patients who are expected to have a high mortality,i.e.,a prognostic enrichment.Second,select patients who are likely to respond to a specific therapy,i.e.,a predictive enrichment.展开更多
Soybean yield has traditionally been increased through high planting density,but investigating plant height and petiole traits to select for compact architecture,lodging resistance,and high yield varieties is an under...Soybean yield has traditionally been increased through high planting density,but investigating plant height and petiole traits to select for compact architecture,lodging resistance,and high yield varieties is an underexplored option for further improving yield.We compared the relationships between yield-related traits,lodging resistance,and petioleassociated phenotypes in the short petiole germplasm M657 with three control accessions during 2017–2018 in four locations in the Huang–Huai region,China.The results showed that M657 exhibited stable and high tolerance to high planting density and resistance to lodging,especially at the highest density(8×105 plants ha–1).The regression analysis indicated that a shorter petiole length was significantly associated with increased lodging resistance.The yield analysis showed that M657 achieved higher yields under higher densities,especially in the northern part of the Huang–Huai region.Among the varieties,there were markedly different responses to intra-and inter-row spacing designs with respect to both lodging and yield that were related to location and density.Lodging was positively correlated with planting density,plant height,petiole length,and number of effective branches,but negatively correlated with stem diameter,seed number per plant,and seed weight per plant.The yield of soybean was increased by appropriately increasing the planting density on the basis of the current soybean varieties in the Huang–Huai region.This study provides a valuable new germplasm resource for the introgression of compact architecture traits that are amenable to providing a high yield in high density planting systems,and it establishes a high-yield model of soybean in the Huang–Huai region.展开更多
BACKGROUND Alcohol use disorder is a prevalent disease in the United States.It is a well-demonstrated cause of recurrent and long-standing liver and pancreatic injury which can lead to alcohol-related liver cirrhosis(...BACKGROUND Alcohol use disorder is a prevalent disease in the United States.It is a well-demonstrated cause of recurrent and long-standing liver and pancreatic injury which can lead to alcohol-related liver cirrhosis(ALC)and chronic pancreatitis(ACP).ALC and ACP are associated with significant healthcare utilization,cost burden,and mortality.The prevalence of coexistent disease(CD)ranges widely in the literature and the intersection between ALC and ACP is inconsistently charac-terized.As such,the clinical profile of coexistent ALC and ACP remains poorly understood.We hypothesized that patients with CD have a worse phenotype when compared to single organ disease.AIM To compare the clinical profile and outcomes of patients with CD from those with ALC or ACP Only.METHODS In this retrospective comparative analysis,we reviewed international classi-fication of disease 9/10 codes and electronic health records of adult patients with verified ALC Only(n=135),ACP Only(n=87),and CD(n=133)who received care at UPMC Presbyterian-Shadyside Hospital.ALC was defined by histology,imaging or clinical evidence of cirrhosis or hepatic decompensation.ACP was defined by imaging findings of pancreatic calcifications,moderate-severe pancreatic duct dilatation,irregularity or atrophy.We compared demographics,pertinent clinical variables,healthcare utilization,and mortality for patients with CD with those who had single organ disease.RESULTS Compared to CD or ACP Only,patients with ALC Only were more likely to be older,Caucasian,have higher body mass index,and Hepatitis B or C infection.CD patients(vs ALC Only)were less likely to have imaging evidence of cirrhosis and portal hypertension despite possessing similar MELD-Na and Child C scores at the most recent contact.CD patients(vs ACP Only)were less likely to have acute or recurrent acute pancreatitis,diabetes mellitus,insulin use,oral pancreatic enzyme therapy,and need for endoscopic therapy or pancreatic surgery.The number of hospitalizations in patients with CD were similar to ACP Only but significantly higher than ALC Only.The overall mortality in patients with CD was similar to ALC Only but trended to be higher than ACP Only(P=0.10).CONCLUSION CD does not have a worse phenotype compared with single organ disease.The dominant phenotype in CD is similar to ALC Only which should be the focus in longitudinal follow-up.展开更多
Peanut (Arachis hypogaea L.) is a highly nutritious food that is an excellent source of protein and is associated with increased coronary health, lower risk of type-2 diabetes, lower risk of breast cancer and a health...Peanut (Arachis hypogaea L.) is a highly nutritious food that is an excellent source of protein and is associated with increased coronary health, lower risk of type-2 diabetes, lower risk of breast cancer and a healthy profile of inflammatory biomarkers. The domestic demand for organic peanuts has significantly increased, requiring new breeding efforts to develop peanut varieties adapted to the organic farming system. The use of unmanned aerial system (UAS) has gained scientific attention because of the ability to generate high-throughput phenotypic data. However, it has not been fully investigated for phenotyping agronomic traits of organic peanuts. Peanuts are beneficial for cardio system protection and are widely used. Within the U.S., peanuts are grown in 11 states on roughly 600,000 hectares and averaging 4500 kg/ha. This study’s objective was to test the accuracy of UAS data in the phenotyping pod and seed yield of organic peanuts. UAS data was collected from a field plot with 20 Spanish peanut breeding lines on July 07, 2021 and September 27, 2021. The study was a randomized complete block design (RCBD) with 3 blocks. Twenty-five vegetation indices (VIs) were calculated. The analysis of variance showed significant genotypic effects on all 25 vegetation indices for both flights (p < 0.05). The vegetation index Red edge (RE) from the first flight was the most significantly correlated with both pod (r = 0.44) and seed yield (r = 0.64). These results can be used to further advance organic peanut breeding efforts with high-throughput data collection.展开更多
Background: In disorders of sexual differentiation, sexual development may not conform to the chromosomal structure, thus forming different types of abnormalities. Among these abnormalities is syndrome 46, XX DSD wher...Background: In disorders of sexual differentiation, sexual development may not conform to the chromosomal structure, thus forming different types of abnormalities. Among these abnormalities is syndrome 46, XX DSD where most patients are female phenotype with clitoral hypertrophy that can go to complete masculinization especially in the presence of the SRY gene. Objective: The goal of this work is to demonstrate a relationship between the genotype and the phenotype in five patients karyotype 46, XX with the presence of the SRY gene. Methodology: The study involves five patients referred to the laboratory under suspicion of sexual development anomalies. The diagnosis took place through hormonal and echography examinations, a classic cytogenetic study (Barr chromatin and karyotype) and an amplification of the SRY gene located on the Y chromosome. The resulting PCR products were sent for sequencing. Results: Based on the results of clinical and paraclinical tests carried out it was found clitoral hypertrophy, the presence of clitoris penis for some, presence of normal penis for others. In addition, echography revealed a lack of female internal genitalia (P2, P3), and a presence of testicles (P3, P4, P5). Genetic analysis (chromosomal and molecular) showed a karyotype 46, XX SRY (+) for all patients. New mutations were found c.246 T > A, p.82 Asn82Lys and c.171 G > C, p.57 Gln57His. Conclusion: In our study, we were able to correlate each DSD with karyotype 46, XX to a pathology such as 46, XX DSD testicular, 46, XX DSD with clitoral hypertrophy and ovotestis 46, XX. The next step will undoubtedly be the integration of other molecular techniques (genotyping, FISH, CGH or even the CGH array) to further genetic exploration.展开更多
Cadmium(Cd)contamination in rice has been a serious threat to human health.To investigate the effects of arbuscular mycorrhizal fungi(AMF)on the Cd translocation in rice,a controlled pot experiment was conducted.The r...Cadmium(Cd)contamination in rice has been a serious threat to human health.To investigate the effects of arbuscular mycorrhizal fungi(AMF)on the Cd translocation in rice,a controlled pot experiment was conducted.The results indicated that AMF significantly increased rice biomass,with an increase of up to 40.0%,particularly in root biomass by up to 68.4%.Notably,the number of prominent rice individuals also increased,and their plasticity was enhanced following AMF inoculation.AMF led to an increase in the net photosynthetic rate and antioxidant enzyme activity of rice.In the AMF treatment group,the Cd concentration in the rice roots was significantly higher(19.1%‒68.0%)compared with that in the control group.Conversely,the Cd concentration in the rice seeds was lower in the AMF treatment group,indicating that AMF facilitated the sequestration of Cd in rice roots and reduced Cd accumulation in the seeds.Path coefficients varied across different treatments,suggesting that AMF inoculation reduced the direct impact of soil Cd concentration on the total Cd accumulation in seeds.The translocation of Cd was consistently associated with simultaneous growth dilution and compensatory accumulation as a result of mycorrhizal effects.Our study quantitatively analyzed this process through path analysis and clarified the causal relationship between rice growth and Cd transfer under the influence of AMF.展开更多
Acylcarnitines are metabolic intermediates of fatty acids and branched-chain amino acids having vital biofunctions and pathophysiological significances. Here, we developed a high-throughput method for quantifying hund...Acylcarnitines are metabolic intermediates of fatty acids and branched-chain amino acids having vital biofunctions and pathophysiological significances. Here, we developed a high-throughput method for quantifying hundreds of acylcarnitines in one run using ultrahigh performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS). This enabled simultaneous quantification of 1136 acylcarnitines (C0–C26) within 10-min with good sensitivity (limit of detection < 0.7 fmol), linearity (correlation coefficient > 0.992), accuracy (relative error < 20%), precision (coefficient of variation (CV), CV < 15%), stability (CV < 15%), and inter-technician consistency (CV < 20%, n = 6). We also established a quantitative structure-retention relationship (goodness of fit > 0.998) for predicting retention time (tR) of acylcarnitines with no standards and built a database of their multiple reaction monitoring parameters (tR, ion-pairs, and collision energy). Furthermore, we quantified 514 acylcarnitines in human plasma and urine, mouse kidney, liver, heart, lung, and muscle. This provides a rapid method for quantifying acylcarnitines in multiple biological matrices.展开更多
Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have rev...Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI.展开更多
The growing global population presents a significant challenge to ensuring food security,further compounded by the increasing threat of salinity to agricultural productivity.Wheat,a major staple food providing 20%of t...The growing global population presents a significant challenge to ensuring food security,further compounded by the increasing threat of salinity to agricultural productivity.Wheat,a major staple food providing 20%of the total caloric intake for humans,is susceptible to salinity stress.Developing new salttolerant wheat cultivars using wheat breeding techniques and genetic modifications is crucial to addressing this issue while ensuring the sustainability and efficiency of wheat production systems within the prevailing climate trend.This review overviews the current landscape in this field and explores key mechanisms and associated genetic traits that warrant attention within breeding programs.We contend that traditional approaches to breeding wheat for Na^(+)exclusion have limited applicability across varying soil salinity levels,rendering them inefficient.Moreover,we question current phenotyping approaches,advocating for a shift from whole-plant assessments to cell-based phenotyping platforms.Finally,we propose a broader use of wild wheat relatives and various breeding strategies to tap into their germplasm pool for inclusion in wheat breeding programs.展开更多
Bird plumage color has been assessed as a possible trait driving the presence of bird species in urban areas.Although some species can see the ultraviolet(UV) spectrum,the mentioned studies did not take into account U...Bird plumage color has been assessed as a possible trait driving the presence of bird species in urban areas.Although some species can see the ultraviolet(UV) spectrum,the mentioned studies did not take into account UV reflectance when characterizing bird plumage.This study aimed to use a recent database of the colorfulness in passerines that incorporated the UV spectrum to compare bird colorfulness and other traits between urban parks and rural areas in Central-East Argentina.Birds in urban parks were surveyed in 51 parks in 6 cities during breeding and non-breeding seasons.A list of Passeriformes species from parks was created,and a list of urban avoider species was created from the bibliography.Species traits were body mass,clutch size,migratory status,nesting site,diet and habitat breadth,and plumage colorfulness.A total of 85 species were detected in the regional pool,of which 30 species were detected in urban parks.Bird species present in urban parks were more colorful than bird species only present in rural areas.In addition,bird presence in urban parks was positively related to their regional frequency and diet breadth.Moreover,urban presence was related to nesting on trees and buildings,whereas species not present in urban parks nested on the ground.The results obtained showed that bird color is significantly associated with presence of bird species in urban parks.展开更多
文摘There is growing evidence that long-term central nervous system(CNS)inflammation exacerbates secondary deterioration of brain structures and functions and is one of the major determinants of disease outcome and progression.In acute CNS injury,brain microglia are among the first cells to respond and play a critical role in neural repair and regeneration.However,microglial activation can also impede CNS repair and amplify tissue damage,and phenotypic transformation may be responsible for this dual role.Mesenchymal stem cell(MSC)-derived exosomes(Exos)are promising therapeutic agents for the treatment of acute CNS injuries due to their immunomodulatory and regenerative properties.MSC-Exos are nanoscale membrane vesicles that are actively released by cells and are used clinically as circulating biomarkers for disease diagnosis and prognosis.MSC-Exos can be neuroprotective in several acute CNS models,including for stroke and traumatic brain injury,showing great clinical potential.This review summarized the classification of acute CNS injury disorders and discussed the prominent role of microglial activation in acute CNS inflammation and the specific role of MSC-Exos in regulating pro-inflammatory microglia in neuroinflammatory repair following acute CNS injury.Finally,this review explored the potential mechanisms and factors associated with MSCExos in modulating the phenotypic balance of microglia,focusing on the interplay between CNS inflammation,the brain,and injury aspects,with an emphasis on potential strategies and therapeutic interventions for improving functional recovery from early CNS inflammation caused by acute CNS injury.
基金supported by grants from the National Natural Science Foundation of China(Grant No.82172660)Hebei Province Graduate Student Innovation Project(Grant No.CXZZBS2023001)Baoding Natural Science Foundation(Grant No.H2272P015).
文摘Among central nervous system-associated malignancies,glioblastoma(GBM)is the most common and has the highest mortality rate.The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently lead to tumor recurrence and sudden relapse in patients treated with temozolomide.In precision medicine,research on GBM treatment is increasingly focusing on molecular subtyping to precisely characterize the cellular and molecular heterogeneity,as well as the refractory nature of GBM toward therapy.Deep understanding of the different molecular expression patterns of GBM subtypes is critical.Researchers have recently proposed tetra fractional or tripartite methods for detecting GBM molecular subtypes.The various molecular subtypes of GBM show significant differences in gene expression patterns and biological behaviors.These subtypes also exhibit high plasticity in their regulatory pathways,oncogene expression,tumor microenvironment alterations,and differential responses to standard therapy.Herein,we summarize the current molecular typing scheme of GBM and the major molecular/genetic characteristics of each subtype.Furthermore,we review the mesenchymal transition mechanisms of GBM under various regulators.
文摘Objective To examine the clinical phenotype and genetic deficiencies present in Chinese aniridia families with PAX6 haplotype deficiency.Methods A comprehensive questionnaire and ophthalmological assessments were administered to both affected patients and unaffected relatives.The clinical feature analysis included the evaluation of visual acuity,intraocular pressure,slit-lamp anterior segment examination,fundus photography,and spectral domain optical coherence tomography.To identify the mutation responsible for aniridia,targeted next-generation sequencing was used as a beneficial technique.Results A total of 4 mutations were identified,consisting of two novel frameshift mutations(c.314delA,p.K105Sfs*33 and c.838_845dup AACACACC,p.S283Tfs*85),along with two recurring nonsense mutations(c.307C>T,p.R103X and c.619A>T,p.K207*).Complete iris absence,macular foveal hypoplasia,and nystagmus were consistent in these PAX6 haplotype-deficient Chinese aniridia families,while corneal lesions,cataracts,and glaucoma exhibited heterogeneity both among the families and within the same family.Conclusion In our study,two novel PAX6 mutations associated with aniridia were identified in Chinese families,which expanded the phenotypic and genotypic spectrum of PAX6 mutations.We also analyzed the clinical characteristics of PAX6 haplotype deficiency in Chinese aniridia families.
基金Supported by the Municipal Government and School(Hospital)Joint Funding Programme of Guangzhou(No.2023A03J0174,No.2023A03J0188)the State Key Laboratories’Youth Program of China(No.83000-32030003).
文摘●AIM:To establish a classification for congenital cataracts that can facilitate individualized treatment and help identify individuals with a high likelihood of different visual outcomes.●METHODS:Consecutive patients diagnosed with congenital cataracts and undergoing surgery between January 2005 and November 2021 were recruited.Data on visual outcomes and the phenotypic characteristics of ocular biometry and the anterior and posterior segments were extracted from the patients’medical records.A hierarchical cluster analysis was performed.The main outcome measure was the identification of distinct clusters of eyes with congenital cataracts.●RESULTS:A total of 164 children(299 eyes)were divided into two clusters based on their ocular features.Cluster 1(96 eyes)had a shorter axial length(mean±SD,19.44±1.68 mm),a low prevalence of macular abnormalities(1.04%),and no retinal abnormalities or posterior cataracts.Cluster 2(203 eyes)had a greater axial length(mean±SD,20.42±2.10 mm)and a higher prevalence of macular abnormalities(8.37%),retinal abnormalities(98.52%),and posterior cataracts(4.93%).Compared with the eyes in Cluster 2(57.14%),those in Cluster 1(71.88%)had a 2.2 times higher chance of good best-corrected visual acuity[<0.7 logMAR;OR(95%CI),2.20(1.25–3.81);P=0.006].●CONCLUSION:This retrospective study categorizes congenital cataracts into two distinct clusters,each associated with a different likelihood of visual outcomes.This innovative classification may enable the personalization and prioritization of early interventions for patients who may gain the greatest benefit,thereby making strides toward precision medicine in the field of congenital cataracts.
基金supported by the National Key Research and Development Program of China(2022YFE0139700,2023YFE0205100)Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation,Ministry of Agriculture and Rural Affairs,Pearl River Fisheries Research Institute,Chinese Academy of Fishery Sciences(20220202)+3 种基金Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Team(2023KJ150)China-ASEAN Maritime Cooperation Fund(CAMC-2018F)National Freshwater Genetic Resource Center(FGRC18537)Guangdong Rural Revitalization Strategy Special Provincial Organization and Implementation Project Funds(2022-SBH-00-001)。
文摘Glass catfish(Kryptopterus vitreolus)are notable in the aquarium trade for their highly transparent body pattern.This transparency is due to the loss of most reflective iridophores and light-absorbing melanophores in the main body,although certain black and silver pigments remain in the face and head.To date,however,the molecular mechanisms underlying this transparent phenotype remain largely unknown.To explore the genetic basis of this transparency,we constructed a chromosome-level haplotypic genome assembly for the glass catfish,encompassing 32 chromosomes and 23344 protein-coding genes,using PacBio and Hi-C sequencing technologies and standard assembly and annotation pipelines.Analysis revealed a premature stop codon in the putative albinism-related tyrp1b gene,encoding tyrosinase-related protein 1,rendering it a nonfunctional pseudogene.Notably,a synteny comparison with over 30 other fish species identified the loss of the endothelin-3(edn3b)gene in the glass catfish genome.To investigate the role of edn3b,we generated edn3b^(−/−)mutant zebrafish,which exhibited a remarkable reduction in black pigments in body surface stripes compared to wild-type zebrafish.These findings indicate that edn3b loss contributes to the transparent phenotype of the glass catfish.Our high-quality chromosome-scale genome assembly and identification of key genes provide important molecular insights into the transparent phenotype of glass catfish.These findings not only enhance our understanding of the molecular mechanisms underlying transparency in glass catfish,but also offer a valuable genetic resource for further research on pigmentation in various animal species.
基金The study was funded by the China National Key Research and Development Program(2022YFC2504503,2023YFC3603104)General Health Science and Technology Program of Zhejiang Province(2024KY1099)+2 种基金the Huadong Medicine Joint Funds of the Zhejiang Provincial Natural Science Foundation of China(LHDMD24H150001)National Natural Science Foundation of China(82272180)the Project of Drug Clinical Evaluate Research of Chinese Pharmaceutical Association(CPA-Z06-ZC-2021e004).
文摘Objective:Some patients exhibit septic symptoms following laparoscopic surgery,leading to a poor prognosis.Effective clinical subphenotyping is critical for guiding tailored therapeutic strategies in these cases.By identifying predisposing factors for postoperative sepsis,clinicians can implement targeted interventions,potentially improving outcomes.This study outlines a workflow for the subphenotype methodology in the context of laparoscopic surgery,along with its practical application.Methods:This study utilized data routinely available in clinical case systems,enhancing the applicability of our findings.The data included vital signs,such as respiratory rate,and laboratory measures,such as blood sodium levels.The process of categorizing clinical routine data involved technical complexities.A correlation heatmap was used to visually depict the relationships between variables.Ordering points were used to identify the clustering structure and combined with Consensus K clustering methods to determine the optimal categorization.Results:Our study highlighted the intricacies of identifying clinical subphenotypes following laparoscopic surgery,and could thus serve as a valuable resource for clinicians and researchers seeking to explore disease heterogeneity in clinical settings.By simplifying complex methodologies,we aimed to bridge the gap between technical expertise and clinical application,fostering an environment where professional medical knowledge is effectively utilized in subphenotyping research.Conclusion:This tutorial could primarily serve as a guide for beginners.A variety of clustering approaches were explored,and each step in the process contributed to a comprehensive understanding of clinical subphenotypes.
基金the National Natural Science Foundation of China,No.82270649.
文摘BACKGROUND Liver cirrhosis is a progressive hepatic disease whose immunological basis has attracted increasing attention.However,it remains unclear whether a concrete causal association exists between immunocyte phenotypes and liver cirrhosis.AIM To explore the concrete causal relationships between immunocyte phenotypes and liver cirrhosis through a mendelian randomization(MR)study.METHODS Data on 731 immunocyte phenotypes were obtained from genome-wide assoc-iation studies.Liver cirrhosis data were derived from the Finn Gen dataset,which included 214403 individuals of European ancestry.We used inverse variable weighting as the primary analysis method to assess the causal relationship.Sensitivity analyses were conducted to evaluate heterogeneity and horizontal pleiotropy.RESULTS The MR analysis demonstrated that 11 immune cell phenotypes have a positive association with liver cirrhosis[P<0.05,odds ratio(OR)>1]and that 9 immu-nocyte phenotypes were negatively correlated with liver cirrhosis(P<0.05,OR<1).Liver cirrhosis was positively linked to 9 immune cell phenotypes(P<0.05,OR>1)and negatively linked to 10 immune cell phenotypes(P<0.05;OR<1).None of these associations showed heterogeneity or horizontally pleiotropy(P>0.05).CONCLUSION This bidirectional two-sample MR study demonstrated a concrete causal association between immunocyte phenotypes and liver cirrhosis.These findings offer new directions for the treatment of liver cirrhosis.
文摘Background: In Vitro Fertilization/Intracytoplasmic Sperm Injection (IVF/ICSI) represents the final step in the management of Polycystic Ovarian Syndrome (PCOS). Our objective was to study the association between PCOS phenotypes and IVF/ICSI results in women admitted to Gynaecological Endoscopic Surgery and Human Reproductive Teaching Hospital (CHRACERH). Material and Method: We carried out a cohort study with historical-prospective data collection over a period of seven years (January 2016 to March 2023) at Chracerh. PCOS patients were subdivided into 4 subgroups A, B, C and D. Results: We recruited 128 patients including 64 PCOS patients divided into four phenotypes and 64 non-PCOS patients constituting the control group. Phenotype D without hyperandrogenism had used the lowest dose of gonadotropins, i.e. 1939.7 ± 454.3 IU, and had produced a greater quantity of estradiol on the day ovulation was triggered (6529.8 ± 4324.8 ng/ml). The average number of punctured follicles and mature oocytes were higher in the phenotype D group. Ovarian hyperstimulation syndrome (OHSS) occurred mainly in phenotype D (3/35), with an estimated prevalence of 2.3%. The fertilization rate seemed lower in the hyperandrogenic phenotypes A, B, C compared to the group without hyperandrogenism without significant difference (p = 0.461). The biological pregnancy rate and live birth rate were comparable between the different groups. Conclusion: Phenotype D used less dose of gonadotropins. Biological pregnancy and live birth rates were comparable between the different phenotypes.
基金supported by the National Natural Science Foundation of China(62276032,32072016)the Agricultural Science and Technology Innovation Program(ASTIP)of Chinese Academy of Agricultural Sciences。
文摘Automatic collecting of phenotypic information from plants has become a trend in breeding and smart agriculture.Targeting mature soybean plants at the harvesting stage,which are dense and overlapping,we have proposed the SPP-extractor(soybean plant phenotype extractor)algorithm to acquire phenotypic traits.First,to address the mutual occultation of pods,we augmented the standard YOLOv5s model for target detection with an additional attention mechanism.The resulting model could accurately identify pods and stems and could count the entire pod set of a plant in a single scan.Second,considering that mature branches are usually bent and covered with pods,we designed a branch recognition and measurement module combining image processing,target detection,semantic segmentation,and heuristic search.Experimental results on real plants showed that SPP-extractor achieved respective R^(2) scores of 0.93–0.99 for four phenotypic traits,based on regression on manual measurements.
基金Suzhou Youth Project of Promoting Health through Science and Education,Grant ID:KJXW2022010.
文摘Previous study revealed that ferritin heavy chain-1(FTH1)could regulate ferritinophagy and affect intracellular Fe^(+)content in various tumors,while its N6-methyladenosine(m6A)RNA methylation was closely related the prognosis of ovarian cancer patients.However,little is known about the role of FTH1 m6A methylation in ovarian cancer(OC)and its possible action mechanisms.In this study we constructed FTH1 m6A methylation regulatory pathway(LncRNA CACNA1G-AS1/IGF2BP1)according to related bioinformatics analysis and research,through clinical sample detections we found that these pathway regulatory factors were significantly up-regulated in ovarian cancer tissues,and their expression levels were closely related to the malignant phenotype of ovarian cancer.In vitro cell experiments showed that LncRNA CACNA1G-AS1 could up-regulate FTH1 expression through IGF2BP1 axis,thus inhibited ferroptosis by regulating ferritinophagy,and finally promoted proliferation and migration in ovarian cancer cells.Tumor-bearing mice studies showed that the knock-down of LncRNA CACNA1G-AS1 could inhibited the tumorigenesis of ovarian cancer cells in vivo condition.Our results demonstrated that LncRNA CACNA1G-AS1 could promote the malignant phenotypes of ovarian cancer cells through FTH1-IGF2BP1 regulated ferroptosis.
文摘Chronic kidney disease(CKD)patients face an unacceptably high morbidity and mortality,mainly from cardiovascular diseases.Diabetes mellitus,arterial hypertension and dyslipidemia are highly prevalent in CKD patients.Established therapeutic protocols for the treatment of diabetes mellitus,arterial hypertension,and dyslipidemia are not as effective in CKD patients as in the general population.The role of non-traditional risk factors(RF)has gained interest in the last decades.These entail the deranged clinical spectrum of secondary hyperparathyroidism involving vascular and valvular calcification,under the term“CKDmineral and bone disorder”(CKD-MBD),uremia per se,inflammation and oxidative stress.Each one of these non-traditional RF have been addressed in various study designs,but the results do not exhibit any applied clinical benefit for CKD-patients.The“crusade”against cardiorenal morbidity and mortality in CKD-patients is in some instances,derailed.We propose a therapeutic paradigm advancing from isolated treatment targets,as practiced today,to precision medicine involving patient phenotypes with distinct underlying pathophysiology.In this regard we propose two steps,based on current stratification management of corona virus disease-19 and sepsis.First,select patients who are expected to have a high mortality,i.e.,a prognostic enrichment.Second,select patients who are likely to respond to a specific therapy,i.e.,a predictive enrichment.
基金funded by the National Natural Science Foundation of China (31271753)the Central Publicinterest Scientific Institution Basal Research Fund, China (S2021ZD02)the Agricultural Science and Technology Innovation Program (ASTIP) of the Chinese Academy of Agricultural Sciences (CAAS-ZDRW202003-1)。
文摘Soybean yield has traditionally been increased through high planting density,but investigating plant height and petiole traits to select for compact architecture,lodging resistance,and high yield varieties is an underexplored option for further improving yield.We compared the relationships between yield-related traits,lodging resistance,and petioleassociated phenotypes in the short petiole germplasm M657 with three control accessions during 2017–2018 in four locations in the Huang–Huai region,China.The results showed that M657 exhibited stable and high tolerance to high planting density and resistance to lodging,especially at the highest density(8×105 plants ha–1).The regression analysis indicated that a shorter petiole length was significantly associated with increased lodging resistance.The yield analysis showed that M657 achieved higher yields under higher densities,especially in the northern part of the Huang–Huai region.Among the varieties,there were markedly different responses to intra-and inter-row spacing designs with respect to both lodging and yield that were related to location and density.Lodging was positively correlated with planting density,plant height,petiole length,and number of effective branches,but negatively correlated with stem diameter,seed number per plant,and seed weight per plant.The yield of soybean was increased by appropriately increasing the planting density on the basis of the current soybean varieties in the Huang–Huai region.This study provides a valuable new germplasm resource for the introgression of compact architecture traits that are amenable to providing a high yield in high density planting systems,and it establishes a high-yield model of soybean in the Huang–Huai region.
文摘BACKGROUND Alcohol use disorder is a prevalent disease in the United States.It is a well-demonstrated cause of recurrent and long-standing liver and pancreatic injury which can lead to alcohol-related liver cirrhosis(ALC)and chronic pancreatitis(ACP).ALC and ACP are associated with significant healthcare utilization,cost burden,and mortality.The prevalence of coexistent disease(CD)ranges widely in the literature and the intersection between ALC and ACP is inconsistently charac-terized.As such,the clinical profile of coexistent ALC and ACP remains poorly understood.We hypothesized that patients with CD have a worse phenotype when compared to single organ disease.AIM To compare the clinical profile and outcomes of patients with CD from those with ALC or ACP Only.METHODS In this retrospective comparative analysis,we reviewed international classi-fication of disease 9/10 codes and electronic health records of adult patients with verified ALC Only(n=135),ACP Only(n=87),and CD(n=133)who received care at UPMC Presbyterian-Shadyside Hospital.ALC was defined by histology,imaging or clinical evidence of cirrhosis or hepatic decompensation.ACP was defined by imaging findings of pancreatic calcifications,moderate-severe pancreatic duct dilatation,irregularity or atrophy.We compared demographics,pertinent clinical variables,healthcare utilization,and mortality for patients with CD with those who had single organ disease.RESULTS Compared to CD or ACP Only,patients with ALC Only were more likely to be older,Caucasian,have higher body mass index,and Hepatitis B or C infection.CD patients(vs ALC Only)were less likely to have imaging evidence of cirrhosis and portal hypertension despite possessing similar MELD-Na and Child C scores at the most recent contact.CD patients(vs ACP Only)were less likely to have acute or recurrent acute pancreatitis,diabetes mellitus,insulin use,oral pancreatic enzyme therapy,and need for endoscopic therapy or pancreatic surgery.The number of hospitalizations in patients with CD were similar to ACP Only but significantly higher than ALC Only.The overall mortality in patients with CD was similar to ALC Only but trended to be higher than ACP Only(P=0.10).CONCLUSION CD does not have a worse phenotype compared with single organ disease.The dominant phenotype in CD is similar to ALC Only which should be the focus in longitudinal follow-up.
文摘Peanut (Arachis hypogaea L.) is a highly nutritious food that is an excellent source of protein and is associated with increased coronary health, lower risk of type-2 diabetes, lower risk of breast cancer and a healthy profile of inflammatory biomarkers. The domestic demand for organic peanuts has significantly increased, requiring new breeding efforts to develop peanut varieties adapted to the organic farming system. The use of unmanned aerial system (UAS) has gained scientific attention because of the ability to generate high-throughput phenotypic data. However, it has not been fully investigated for phenotyping agronomic traits of organic peanuts. Peanuts are beneficial for cardio system protection and are widely used. Within the U.S., peanuts are grown in 11 states on roughly 600,000 hectares and averaging 4500 kg/ha. This study’s objective was to test the accuracy of UAS data in the phenotyping pod and seed yield of organic peanuts. UAS data was collected from a field plot with 20 Spanish peanut breeding lines on July 07, 2021 and September 27, 2021. The study was a randomized complete block design (RCBD) with 3 blocks. Twenty-five vegetation indices (VIs) were calculated. The analysis of variance showed significant genotypic effects on all 25 vegetation indices for both flights (p < 0.05). The vegetation index Red edge (RE) from the first flight was the most significantly correlated with both pod (r = 0.44) and seed yield (r = 0.64). These results can be used to further advance organic peanut breeding efforts with high-throughput data collection.
文摘Background: In disorders of sexual differentiation, sexual development may not conform to the chromosomal structure, thus forming different types of abnormalities. Among these abnormalities is syndrome 46, XX DSD where most patients are female phenotype with clitoral hypertrophy that can go to complete masculinization especially in the presence of the SRY gene. Objective: The goal of this work is to demonstrate a relationship between the genotype and the phenotype in five patients karyotype 46, XX with the presence of the SRY gene. Methodology: The study involves five patients referred to the laboratory under suspicion of sexual development anomalies. The diagnosis took place through hormonal and echography examinations, a classic cytogenetic study (Barr chromatin and karyotype) and an amplification of the SRY gene located on the Y chromosome. The resulting PCR products were sent for sequencing. Results: Based on the results of clinical and paraclinical tests carried out it was found clitoral hypertrophy, the presence of clitoris penis for some, presence of normal penis for others. In addition, echography revealed a lack of female internal genitalia (P2, P3), and a presence of testicles (P3, P4, P5). Genetic analysis (chromosomal and molecular) showed a karyotype 46, XX SRY (+) for all patients. New mutations were found c.246 T > A, p.82 Asn82Lys and c.171 G > C, p.57 Gln57His. Conclusion: In our study, we were able to correlate each DSD with karyotype 46, XX to a pathology such as 46, XX DSD testicular, 46, XX DSD with clitoral hypertrophy and ovotestis 46, XX. The next step will undoubtedly be the integration of other molecular techniques (genotyping, FISH, CGH or even the CGH array) to further genetic exploration.
基金the National Natural Science Foundation of China(Grant No.52270154)the National Engineering Research Center for Bioenergy,Harbin Institute of Technology,China(Grant No.2021C001).
文摘Cadmium(Cd)contamination in rice has been a serious threat to human health.To investigate the effects of arbuscular mycorrhizal fungi(AMF)on the Cd translocation in rice,a controlled pot experiment was conducted.The results indicated that AMF significantly increased rice biomass,with an increase of up to 40.0%,particularly in root biomass by up to 68.4%.Notably,the number of prominent rice individuals also increased,and their plasticity was enhanced following AMF inoculation.AMF led to an increase in the net photosynthetic rate and antioxidant enzyme activity of rice.In the AMF treatment group,the Cd concentration in the rice roots was significantly higher(19.1%‒68.0%)compared with that in the control group.Conversely,the Cd concentration in the rice seeds was lower in the AMF treatment group,indicating that AMF facilitated the sequestration of Cd in rice roots and reduced Cd accumulation in the seeds.Path coefficients varied across different treatments,suggesting that AMF inoculation reduced the direct impact of soil Cd concentration on the total Cd accumulation in seeds.The translocation of Cd was consistently associated with simultaneous growth dilution and compensatory accumulation as a result of mycorrhizal effects.Our study quantitatively analyzed this process through path analysis and clarified the causal relationship between rice growth and Cd transfer under the influence of AMF.
基金financial supports from the National Key R&D Program of China(Grant Nos.:2022YFC3400700,2022YFA0806400,and 2020YFE0201600)Shanghai Municipal Science and Technology Major Project(Grant No.:2017SHZDZX01)the National Natural Science Foundation of China(Grant No.:31821002).
文摘Acylcarnitines are metabolic intermediates of fatty acids and branched-chain amino acids having vital biofunctions and pathophysiological significances. Here, we developed a high-throughput method for quantifying hundreds of acylcarnitines in one run using ultrahigh performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS). This enabled simultaneous quantification of 1136 acylcarnitines (C0–C26) within 10-min with good sensitivity (limit of detection < 0.7 fmol), linearity (correlation coefficient > 0.992), accuracy (relative error < 20%), precision (coefficient of variation (CV), CV < 15%), stability (CV < 15%), and inter-technician consistency (CV < 20%, n = 6). We also established a quantitative structure-retention relationship (goodness of fit > 0.998) for predicting retention time (tR) of acylcarnitines with no standards and built a database of their multiple reaction monitoring parameters (tR, ion-pairs, and collision energy). Furthermore, we quantified 514 acylcarnitines in human plasma and urine, mouse kidney, liver, heart, lung, and muscle. This provides a rapid method for quantifying acylcarnitines in multiple biological matrices.
基金supported by a grant from the Standardization and Integration of Resources Information for Seed-cluster in Hub-Spoke Material Bank Program,Rural Development Administration,Republic of Korea(PJ01587004).
文摘Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI.
基金supported by Australian Research Council,Australia grants to Sergey Shabala and Kadambot H.M.Siddique。
文摘The growing global population presents a significant challenge to ensuring food security,further compounded by the increasing threat of salinity to agricultural productivity.Wheat,a major staple food providing 20%of the total caloric intake for humans,is susceptible to salinity stress.Developing new salttolerant wheat cultivars using wheat breeding techniques and genetic modifications is crucial to addressing this issue while ensuring the sustainability and efficiency of wheat production systems within the prevailing climate trend.This review overviews the current landscape in this field and explores key mechanisms and associated genetic traits that warrant attention within breeding programs.We contend that traditional approaches to breeding wheat for Na^(+)exclusion have limited applicability across varying soil salinity levels,rendering them inefficient.Moreover,we question current phenotyping approaches,advocating for a shift from whole-plant assessments to cell-based phenotyping platforms.Finally,we propose a broader use of wild wheat relatives and various breeding strategies to tap into their germplasm pool for inclusion in wheat breeding programs.
基金funded by the Agencia Nacional de Promoción de la Investigaciónel Desarrollo Tecnológico y la InnovaciónPICT 2015-0978。
文摘Bird plumage color has been assessed as a possible trait driving the presence of bird species in urban areas.Although some species can see the ultraviolet(UV) spectrum,the mentioned studies did not take into account UV reflectance when characterizing bird plumage.This study aimed to use a recent database of the colorfulness in passerines that incorporated the UV spectrum to compare bird colorfulness and other traits between urban parks and rural areas in Central-East Argentina.Birds in urban parks were surveyed in 51 parks in 6 cities during breeding and non-breeding seasons.A list of Passeriformes species from parks was created,and a list of urban avoider species was created from the bibliography.Species traits were body mass,clutch size,migratory status,nesting site,diet and habitat breadth,and plumage colorfulness.A total of 85 species were detected in the regional pool,of which 30 species were detected in urban parks.Bird species present in urban parks were more colorful than bird species only present in rural areas.In addition,bird presence in urban parks was positively related to their regional frequency and diet breadth.Moreover,urban presence was related to nesting on trees and buildings,whereas species not present in urban parks nested on the ground.The results obtained showed that bird color is significantly associated with presence of bird species in urban parks.