Poly(phenylene sulfide amide) (PPSA) has been synthesized by using sulfur as S source which reacts with dichlorobenzamide (DCBA) and alkali in polar organic solvent at the atmospheric pressure. The polymer structures ...Poly(phenylene sulfide amide) (PPSA) has been synthesized by using sulfur as S source which reacts with dichlorobenzamide (DCBA) and alkali in polar organic solvent at the atmospheric pressure. The polymer structures were determined by elemental analysis, FT-IR and H-1-NMR. It is shown that the yielded polymer has linear structure and its structure unit is -p-C6H4-CONH -p-C6H4-S-. The polymer morphology was studied by X-ray diffraction and polarized microscopy. The results show that PPSA is a crystalline polymer and its spherulites are the aggregation of nontwisting lamella or micro-thread structure. Under shearing force, these crystals are dispersed to form micro-fibrillar structure. The decomposition kinetics of PPSA was also studied at different heating rates. The decomposition energy of PPSA is higher than that of PPS.展开更多
A new process for preparing poly(phenylene sulfide amide, PPSA), which is by reaction of sulfur instead of sodium sulfide as S source with dichlorobenzamide (DCBA) and alkali in polar orga...A new process for preparing poly(phenylene sulfide amide, PPSA), which is by reaction of sulfur instead of sodium sulfide as S source with dichlorobenzamide (DCBA) and alkali in polar organic solvent at the atmospheric pressure (called sulfur solution route), is reported in the present paper. The influences of polymerization time, molar ratio of precursors, catalyst and solvent upon the polymer were investigated. To seek the best parameters of polymerization, orthogonal design was employed in the experiments. The results indicate that the molar ratio of precursors is the most significant effect on both of viscosity and yield of the polymer. The suitable parameters for preparing the related polymer are presented. The polymer was characterized by IRspectrum, 1HNMRspectrum and Raman spectrum, etc.展开更多
The morphology of PPTA pulp is investigated by means of optical microscope and scanningelectron microscope (SEM). It shows that PPTA pulp has feather-like branch, needle point-likeend, and irregular cross-section, whi...The morphology of PPTA pulp is investigated by means of optical microscope and scanningelectron microscope (SEM). It shows that PPTA pulp has feather-like branch, needle point-likeend, and irregular cross-section, which are very important for PPTA pulp as a reinforcer. Theseparation limitation of PPTA pulp is also investigated from both torn and brittle break cross-sec-tion. A packing mechanism is proposed to illustrate the microfibril packing in the gel system.展开更多
文摘Poly(phenylene sulfide amide) (PPSA) has been synthesized by using sulfur as S source which reacts with dichlorobenzamide (DCBA) and alkali in polar organic solvent at the atmospheric pressure. The polymer structures were determined by elemental analysis, FT-IR and H-1-NMR. It is shown that the yielded polymer has linear structure and its structure unit is -p-C6H4-CONH -p-C6H4-S-. The polymer morphology was studied by X-ray diffraction and polarized microscopy. The results show that PPSA is a crystalline polymer and its spherulites are the aggregation of nontwisting lamella or micro-thread structure. Under shearing force, these crystals are dispersed to form micro-fibrillar structure. The decomposition kinetics of PPSA was also studied at different heating rates. The decomposition energy of PPSA is higher than that of PPS.
文摘A new process for preparing poly(phenylene sulfide amide, PPSA), which is by reaction of sulfur instead of sodium sulfide as S source with dichlorobenzamide (DCBA) and alkali in polar organic solvent at the atmospheric pressure (called sulfur solution route), is reported in the present paper. The influences of polymerization time, molar ratio of precursors, catalyst and solvent upon the polymer were investigated. To seek the best parameters of polymerization, orthogonal design was employed in the experiments. The results indicate that the molar ratio of precursors is the most significant effect on both of viscosity and yield of the polymer. The suitable parameters for preparing the related polymer are presented. The polymer was characterized by IRspectrum, 1HNMRspectrum and Raman spectrum, etc.
文摘The morphology of PPTA pulp is investigated by means of optical microscope and scanningelectron microscope (SEM). It shows that PPTA pulp has feather-like branch, needle point-likeend, and irregular cross-section, which are very important for PPTA pulp as a reinforcer. Theseparation limitation of PPTA pulp is also investigated from both torn and brittle break cross-sec-tion. A packing mechanism is proposed to illustrate the microfibril packing in the gel system.