Insect pheromone-binding proteins (PBPs) play important roles in transporting hydrophobic pheromone components across the sensillum lymph to the surface of olfactory receptors (ORs). However, the PBPs of the orien...Insect pheromone-binding proteins (PBPs) play important roles in transporting hydrophobic pheromone components across the sensillum lymph to the surface of olfactory receptors (ORs). However, the PBPs of the oriental fruit moth, Grapholita molesta, an important destructive pest of stone fruits worldwide, are not well characterized. In this study, two new putative PBP genes, GmolPBP2 and GmolPBP3, were identiifed from G. molesta antennae. The deduced amino-acid sequences of these two putative PBP genes are characteristic of the odorant binding protein family, containing six conserved cysteine residues. The genomic DNA sequence of each gene contained two introns. However, the lengths and positions of the introns differed. RT-PCR analyses revealed that the two GmolPBP genes are only expressed in the antennae of female and male moths. Quantitative real-time PCR indicated that the transcription levels of GmolPBP2 are far greater than those of GmolPBP3 in both female and male antennae. GmolPBP3 showed higher transcription levels in female antennae than in male antennae, while GmolPBP2 showed similar transcription levels in both female and male antennae. The transcript levels of both genes were signiifcantly different in premating and post-coitum individuals, implying that mating affects the process of sex pheromone reception. To better understand the functions, two GmolPBPs were expressed in Escherichia coli, and the ligand binding assays were conducted. Results showed that GmolPBP2 has strong binding afifnities to two sex pheromone components, E8-12:Ac and Z8-12:Ac, as well as weaker binding afifnities to Z8-12:OH and 12:OH. GmolPBP2 also bound some ordinary odor molecules. However, the afifnity of GmolPBP3 to both sex pheromones and ordinary odor molecules was very weak. These results show that GmolPBP2 plays the main role in pheromone discrimination and recognition in the oriental fruit moth.展开更多
Odorant binding proteins (OBPs) in insects are postulated to solubilize and transport the hydrophobic odorants across the hydrophilic antennal lymph to the olfactory receptors (ORs) located on the dendrite membran...Odorant binding proteins (OBPs) in insects are postulated to solubilize and transport the hydrophobic odorants across the hydrophilic antennal lymph to the olfactory receptors (ORs) located on the dendrite membrane of the sensory neurons. OBPs in adult insects have been intensively reported, but those in larvae are rarely addressed. In our study, a full-length OBP cDNA, namely SexiOBP13, was cloned by RT-PCR and RACE strategy from the heads of Spodoptera exigua larvae. The quantitative real-time PCR (qPCR) measurement indicated that SexiOBP13 was highly expressed in larval head, but very low in other parts of larva and was not detected in any tissues of adult. The binding affinities of SexiOBP13 to plant volatiles and female sex pheromone components were measured by competitive binding assays. Interestingly, SexiOBP13 displayed a high binding affinity (Ki=3.82 IJmol L-1) to Z9,E12-14:Ac, the major sex pheromone component of S. exigua, while low affinities to the tested host plant volatiles (Ki〉27 μmol L-l). The behavioral tests further confirmed that Z9,E12-14:Ac was indeed active to elicit the behavioral activity of the third instar larvae of S. exigua. Taken together, our results suggest that SexiOBP13 may play a role in reception of female sex pheromone in S. exigua larvae. The ecological significance of the larvae preference to the adult female sex pheromone was discussed.展开更多
基金supported by the National Natural Science Foundation of China (31272043)the the Special Fund for Agro-Scientific Research in the Public Interest, China (201103024)
文摘Insect pheromone-binding proteins (PBPs) play important roles in transporting hydrophobic pheromone components across the sensillum lymph to the surface of olfactory receptors (ORs). However, the PBPs of the oriental fruit moth, Grapholita molesta, an important destructive pest of stone fruits worldwide, are not well characterized. In this study, two new putative PBP genes, GmolPBP2 and GmolPBP3, were identiifed from G. molesta antennae. The deduced amino-acid sequences of these two putative PBP genes are characteristic of the odorant binding protein family, containing six conserved cysteine residues. The genomic DNA sequence of each gene contained two introns. However, the lengths and positions of the introns differed. RT-PCR analyses revealed that the two GmolPBP genes are only expressed in the antennae of female and male moths. Quantitative real-time PCR indicated that the transcription levels of GmolPBP2 are far greater than those of GmolPBP3 in both female and male antennae. GmolPBP3 showed higher transcription levels in female antennae than in male antennae, while GmolPBP2 showed similar transcription levels in both female and male antennae. The transcript levels of both genes were signiifcantly different in premating and post-coitum individuals, implying that mating affects the process of sex pheromone reception. To better understand the functions, two GmolPBPs were expressed in Escherichia coli, and the ligand binding assays were conducted. Results showed that GmolPBP2 has strong binding afifnities to two sex pheromone components, E8-12:Ac and Z8-12:Ac, as well as weaker binding afifnities to Z8-12:OH and 12:OH. GmolPBP2 also bound some ordinary odor molecules. However, the afifnity of GmolPBP3 to both sex pheromones and ordinary odor molecules was very weak. These results show that GmolPBP2 plays the main role in pheromone discrimination and recognition in the oriental fruit moth.
基金supported by a grant from the National Natural Science Foundation of China (31372264)the Special Fund for Agro-Scientific Research in the Public Interest,China (201203036)
文摘Odorant binding proteins (OBPs) in insects are postulated to solubilize and transport the hydrophobic odorants across the hydrophilic antennal lymph to the olfactory receptors (ORs) located on the dendrite membrane of the sensory neurons. OBPs in adult insects have been intensively reported, but those in larvae are rarely addressed. In our study, a full-length OBP cDNA, namely SexiOBP13, was cloned by RT-PCR and RACE strategy from the heads of Spodoptera exigua larvae. The quantitative real-time PCR (qPCR) measurement indicated that SexiOBP13 was highly expressed in larval head, but very low in other parts of larva and was not detected in any tissues of adult. The binding affinities of SexiOBP13 to plant volatiles and female sex pheromone components were measured by competitive binding assays. Interestingly, SexiOBP13 displayed a high binding affinity (Ki=3.82 IJmol L-1) to Z9,E12-14:Ac, the major sex pheromone component of S. exigua, while low affinities to the tested host plant volatiles (Ki〉27 μmol L-l). The behavioral tests further confirmed that Z9,E12-14:Ac was indeed active to elicit the behavioral activity of the third instar larvae of S. exigua. Taken together, our results suggest that SexiOBP13 may play a role in reception of female sex pheromone in S. exigua larvae. The ecological significance of the larvae preference to the adult female sex pheromone was discussed.