期刊文献+
共找到305篇文章
< 1 2 16 >
每页显示 20 50 100
Ant Colony Optimization Based on Adaptive Volatility Rate of Pheromone Trail 被引量:1
1
作者 Zhaoquan CAI Han HUANG +1 位作者 Yong QIN Xianheng MA 《International Journal of Communications, Network and System Sciences》 2009年第8期792-796,共5页
Ant colony optimization (ACO) has been proved to be one of the best performing algorithms for NP-hard problems as TSP. The volatility rate of pheromone trail is one of the main parameters in ACO algorithms. It is usua... Ant colony optimization (ACO) has been proved to be one of the best performing algorithms for NP-hard problems as TSP. The volatility rate of pheromone trail is one of the main parameters in ACO algorithms. It is usually set experimentally in the literatures for the application of ACO. The present paper first proposes an adaptive strategy for the volatility rate of pheromone trail according to the quality of the solutions found by artificial ants. Second, the strategy is combined with the setting of other parameters to form a new ACO method. Then, the proposed algorithm can be proved to converge to the global optimal solution. Finally, the experimental results of computing traveling salesman problems and film-copy deliverer problems also indicate that the proposed ACO approach is more effective than other ant methods and non-ant methods. 展开更多
关键词 ant colony optimization (ACO) ADAPTIVE VOLATILITY RATE pheromone TRAIL
下载PDF
An Effective Optimization Algorithm for Ant Colony Vehicular Congestion Management
2
作者 Tebepah Tariuge Timadi Matthew 《Journal of Computer and Communications》 2024年第9期119-130,共12页
Adaptability and dynamicity are special properties of social insects derived from the decentralized behavior of the insects. Authors have come up with designs for software solution that can regulate traffic congestion... Adaptability and dynamicity are special properties of social insects derived from the decentralized behavior of the insects. Authors have come up with designs for software solution that can regulate traffic congestion in a network transportation environment. The effectiveness of various researches on traffic management has been verified through appropriate metrics. Most of the traffic management systems are centered on using sensors, visual monitoring and neural networks to check for available parking space with the aim of informing drivers beforehand to prevent traffic congestion. There has been limited research on solving ongoing traffic congestion in congestion prone areas like car park with any of the common methods mentioned. This study focus however is on a motor park, as a highly congested area when it comes to traffic. The car park has two entrance gate and three exit gates which is divided into three Isle of parking lot where cars can park. An ant colony optimization algorithm (ACO) was developed as an effective management system for controlling navigation and vehicular traffic congestion problems when cars exit a motor park. The ACO based on the nature and movement of the natural ants, simulates the movement of cars out of the car park through their nearest choice exit. A car park simulation was also used for the mathematical computation of the pheromone. The system was implemented using SIMD because of its dual parallelization ability. The result showed about 95% increase on the number of vehicles that left the motor park in one second. A clear indication that pheromones are large determinants of the shortest route to take as cars followed the closest exit to them. Future researchers may consider monitoring a centralized tally system for cars coming into the park through a censored gate being. 展开更多
关键词 ant colony optimization ADAPTABILITY CONGESTION pheromoneS
下载PDF
Novel Approach to Nonlinear PID Parameter Optimization Using Ant Colony Optimization Algorithm 被引量:11
3
作者 Duan Hai-bin Wang Dao-bo Yu Xiu-fen 《Journal of Bionic Engineering》 SCIE EI CSCD 2006年第2期73-78,共6页
This paper presents an application of an Ant Colony Optimization (ACO) algorithm to optimize the parameters in the design of a type of nonlinear PID controller. The ACO algorithm is a novel heuristic bionic algorith... This paper presents an application of an Ant Colony Optimization (ACO) algorithm to optimize the parameters in the design of a type of nonlinear PID controller. The ACO algorithm is a novel heuristic bionic algorithm, which is based on the behaviour of real ants in nature searching for food. In order to optimize the parameters of the nonlinear PID controller using ACO algorithm, an objective function based on position tracing error was constructed, and elitist strategy was adopted in the improved ACO algorithm. Detailed simulation steps are presented. This nonlinear PID controller using the ACO algorithm has high precision of control and quick response. 展开更多
关键词 ant colony optimization ALGORITHM pheromone nonlinear PID parameter optimization
下载PDF
An adaptive ant colony system algorithm for continuous-space optimization problems 被引量:20
4
作者 李艳君 吴铁军 《Journal of Zhejiang University Science》 CSCD 2003年第1期40-46,共7页
Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is pr... Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-function-based heuristic pheromone assignment approach for pheromone update to filtrate solution candidates.Global optimal solutions can be reached more rapidly by self-adjusting the path searching behaviors of the ants according to objective values. The performance of the proposed algorithm is compared with a basic ant colony algorithm and a Square Quadratic Programming approach in solving two benchmark problems with multiple extremes. The results indicated that the efficiency and reliability of the proposed algorithm were greatly improved. 展开更多
关键词 ant colony algorithm Continuous space optimization pheromone update strategy
下载PDF
Global path planning approach based on ant colony optimization algorithm 被引量:6
5
作者 文志强 蔡自兴 《Journal of Central South University of Technology》 EI 2006年第6期707-712,共6页
Ant colony optimization (ACO) algorithm was modified to optimize the global path. In order to simulate the real ant colonies, according to the foraging behavior of ant colonies and the characteristic of food, concepti... Ant colony optimization (ACO) algorithm was modified to optimize the global path. In order to simulate the real ant colonies, according to the foraging behavior of ant colonies and the characteristic of food, conceptions of neighboring area and smell area were presented. The former can ensure the diversity of paths and the latter ensures that each ant can reach the goal. Then the whole path was divided into three parts and ACO was used to search the second part path. When the three parts pathes were adjusted, the final path was found. The valid path and invalid path were defined to ensure the path valid. Finally, the strategies of the pheromone search were applied to search the optimum path. However, when only the pheromone was used to search the optimum path, ACO converges easily. In order to avoid this premature convergence, combining pheromone search and random search, a hybrid ant colony algorithm(HACO) was used to find the optimum path. The comparison between ACO and HACO shows that HACO can be used to find the shortest path. 展开更多
关键词 mobile robot ant colony optimization global path planning pheromone
下载PDF
On the Development of a Hybridized Ant Colony Optimization (HACO) Algorithm 被引量:1
6
作者 Kayode J. Adebayo Felix M. Aderibigbe Adejoke O. Dele-Rotimi 《American Journal of Computational Mathematics》 2019年第4期358-372,共15页
This paper proposes a Hybridized Ant Colony Optimization (HACO) algorithm. It integrates the advantages of Ant System (AS) and Ant Colony System (ACS) of solving optimization problems. The main focus and core of the H... This paper proposes a Hybridized Ant Colony Optimization (HACO) algorithm. It integrates the advantages of Ant System (AS) and Ant Colony System (ACS) of solving optimization problems. The main focus and core of the HACO algorithm are based on annexing the strengths of the AS, ACO and the Max-Min Ant System (MMAS) previously proposed by various researchers at one time or the order. In this paper, the HACO algorithm for solving optimization problems employs new Transition Probability relations with a Jump transition probability relation which indicates the point or path at which the desired optimum value has been met. Also, it brings to play a new pheromone updating rule and introduces the pheromone evaporation residue that calculates the amount of pheromone left after updating which serves as a guide to the successive ant traversing the path and diverse local search approaches. Regarding the computational efficiency of the HACO algorithm, we observe that the HACO algorithm can find very good solutions in a short time, as the algorithm has been tested on a number of combinatorial optimization problems and results shown to compare favourably with analytical results. This strength can be combined with other metaheuristic approaches in the future work to solve complex combinatorial optimization problems. 展开更多
关键词 ant colony System Metaheuristics pheromone JUMP Transition Probability pheromone EVAPORATION RESIDUE Hybridized ant colony optimization
下载PDF
Efficiency improvement of ant colony optimization in solving the moderate LTSP 被引量:1
7
作者 Munan Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第6期1301-1309,共9页
In solving small- to medium-scale travelling salesman problems (TSPs) of both symmetric and asymmetric types, the traditional ant colony optimization (ACO) algorithm could work well, providing high accuracy and sa... In solving small- to medium-scale travelling salesman problems (TSPs) of both symmetric and asymmetric types, the traditional ant colony optimization (ACO) algorithm could work well, providing high accuracy and satisfactory efficiency. However, when the scale of the TSP increases, ACO, a heuristic algorithm, is greatly challenged with respect to accuracy and efficiency. A novel pheromone-trail updating strategy that moderately reduces the iteration time required in real optimization problem-solving is proposed. In comparison with the traditional strategy of the ACO in several experiments, the proposed strategy shows advantages in performance. Therefore, this strategy of pheromone-trail updating is proposed as a valuable approach that reduces the time-complexity and increases its efficiency with less iteration time in real optimization applications. Moreover, this strategy is especially applicable in solving the moderate large-scale TSPs based on ACO. 展开更多
关键词 ant colony optimization (ACO) travelling salesmanproblem (TSP) time-complexity of algorithm pheromone-trail up-dating.
下载PDF
A Data Transmission Approach Based on Ant Colony Optimization and Threshold Proxy Re-encryption in WSNs 被引量:2
8
作者 Jing Liu Zenghui Liu +1 位作者 Chenyu Sun Junxi Zhuang 《Journal of Artificial Intelligence and Technology》 2022年第1期23-31,共9页
Wireless sensor networks(WSNs)have become increasingly popular due to the rapid growth of the Internet of Things.As open wireless transmission media are easy to attack,security is one of the primary design concerns fo... Wireless sensor networks(WSNs)have become increasingly popular due to the rapid growth of the Internet of Things.As open wireless transmission media are easy to attack,security is one of the primary design concerns for WSNs.Current solutions consider routing and data encryption as two isolated issues,providing incomplete security.Therefore,in this paper,we divide the WSN communication process into a data path selection phase and a data encryption phase.We propose an improved transmission method based on ant colony optimization(ACO)and threshold proxy re-encryption for WSNs,and we named it as ACOTPRE.The method resists internal and external attacks and ensures safe and efficient data transmission.In the data path selection stage,the ACO algorithm is used for network routing.The improvement of the pheromone concentration is proposed.In order to resist attacks from external attackers,proxy re-encryption is extended to WSN in the data encryption stage.The threshold secret sharing algorithm is introduced to generate a set of re-encryption key fragments composed of random numbers at the source node.We confirm the performance of our model via simulation studies. 展开更多
关键词 wireless sensors network ant colony optimization pheromone proxy re-encryption THRESHOLD
下载PDF
Research of Rural Power Network Reactive Power Optimization Based on Improved ACOA
9
作者 YU Qian ZHAO Yulin WANG Xintao 《Journal of Northeast Agricultural University(English Edition)》 CAS 2010年第3期48-52,共5页
In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this stud... In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable. 展开更多
关键词 rural power network reactive power optimization ant colony optimization algorithm local search strategy pheromone mutation and re-initialization strategy
下载PDF
Image Edge Detection Method Based on Ant Colony Algorithm
10
作者 Qirong Lu Qianmin Liang +1 位作者 Jiqiu Chen Jiwei Xia 《国际计算机前沿大会会议论文集》 2019年第2期184-185,共2页
Ant colony algorithm has good results in finding the optimal solution in a certain field;and image edge detection is an essential foundation for all kinds of image processing. How to improve image edge detection becom... Ant colony algorithm has good results in finding the optimal solution in a certain field;and image edge detection is an essential foundation for all kinds of image processing. How to improve image edge detection becomes a hot topic in image processing. In this paper, the ant colony algorithm is applied to image edge detection, and the ant colony algorithm’s discreteness, parallelism and positive feedback are fully utilized. Through repeated iteration, pheromone acquisition and pheromone matrix were continuously updated to search for images step by step. The experimental results show that the ant colony algorithm can effectively detect the edge of the image, and the detection effect of the algorithm is significantly improved compared with the Roberts algorithm. 展开更多
关键词 ant colony optimization EDGE detection pheromoneS pheromone MATRIX
下载PDF
Adaptive ant-based routing in wireless sensor networks using Energy~* Delay metrics 被引量:6
11
作者 Yao-feng WEN Yu-quan CHEN Min PAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第4期531-538,共8页
To find the optimal routing is always an important topic in wireless sensor networks (WSNs). Considering a WSN where the nodes have limited energy, we propose a novel Energy*Delay model based on ant algorithms ("... To find the optimal routing is always an important topic in wireless sensor networks (WSNs). Considering a WSN where the nodes have limited energy, we propose a novel Energy*Delay model based on ant algorithms ("E&D ANTS" for short) to minimize the time delay in transferring a fixed number of data packets in an energy-constrained manner in one round. Our goal is not only to maximize the lifetime of the network but also to provide real-time data transmission services. However, because of the tradeoff of energy and delay in wireless network systems, the reinforcement learning (RL) algorithm is introduced to train the model. In this survey, the paradigm of E&D ANTS is explicated and compared to other ant-based routing algorithms like AntNet and AntChain about the issues of routing information, routing overhead and adaptation. Simulation results show that our method performs about seven times better than AntNet and also outperforms AntChain by more than 150% in terms of energy cost and delay per round. 展开更多
关键词 ant colony optimization (ACO) pheromoneS Power consumption Wireless sensor networks (WSNs)
下载PDF
双重信息引导的蚁群算法求解绿色多舱车辆路径问题
12
作者 郭宁 申秋义 +3 位作者 钱斌 那靖 胡蓉 毛剑琳 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第6期1067-1078,共12页
针对当前实际运输中广泛存在的绿色多舱车辆路径问题(GMCVRP),文章提出一种双重信息引导的蚁群优化算法(DIACO)进行求解.首先,在DIACO的全局搜索阶段,重新构建传统蚁群优化算法(TACO)中的信息素浓度矩阵(PCM),使其同时包含客户块信息和... 针对当前实际运输中广泛存在的绿色多舱车辆路径问题(GMCVRP),文章提出一种双重信息引导的蚁群优化算法(DIACO)进行求解.首先,在DIACO的全局搜索阶段,重新构建传统蚁群优化算法(TACO)中的信息素浓度矩阵(PCM),使其同时包含客户块信息和客户序列信息,即建立具有双重信息的PCM(DIPCM),从而更全面学习和累积优质解的信息;采用3种启发式方法生成较高质量个体,用于初始化DIPCM,可快速引导算法朝向解空间中优质区域进行搜索.其次,在DIACO的局部搜索阶段,设计结合自适应策略的多种变邻域操作,用于对解空间的优质区域执行深入搜索.再次,提出信息素浓度平衡机制,以防止搜索陷入停滞.最后,使用不同规模的算例进行仿真测试和算法对比,结果验证了DIACO是求解GMCVRP的有效算法. 展开更多
关键词 多舱车辆路径问题 绿色 蚁群优化算法 双重信息引导 信息素浓度平衡机制
下载PDF
舰船管路布置PG-MACO优化方法
13
作者 林焰 金庭宇 杨宇超 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第7期1027-1035,共9页
针对舰船管路设计效率低下的问题提出一种管路布置优化方法.综合考虑安全性、经济性、协调性和可操作性等工程背景建立优化数学模型,改进蚁群算法在处理混合管路布置工况下的缺陷,提出优化可行解搜索的空间状态转移策略,提升信息素启发... 针对舰船管路设计效率低下的问题提出一种管路布置优化方法.综合考虑安全性、经济性、协调性和可操作性等工程背景建立优化数学模型,改进蚁群算法在处理混合管路布置工况下的缺陷,提出优化可行解搜索的空间状态转移策略,提升信息素启发效果并加速算法收敛的信息素扩散机制,面向混合管路布置工况设计多蚁群协同进化机制.基于二次开发技术实现本方法在第三方设计软件上的应用,采用核级一回路管道布置工程案例进行验证.结果表明信息素高斯扩散多蚁群优化(PG-MACO)算法的性能和布置效果优于传统蚁群算法,寻路效率提升58.38%,收敛代数缩短43.24%,布置结果中管路长度缩短33.88%,管路折弯次数减少41.67%,验证了本方法的有效性和工程实用性. 展开更多
关键词 舰船管路 布局优化 蚁群优化算法 信息素扩散
下载PDF
融合自适应聚类与母蚁引导策略的蚁群算法
14
作者 邢李成 游晓明 刘升 《计算机科学与探索》 CSCD 北大核心 2024年第9期2395-2406,共12页
针对蚁群算法在求解较大规模旅行商问题时,容易出现陷入局部最优、收敛速度较慢的情况,提出一个融合自适应聚类与母蚁引导策略的蚁群算法(AMACS)。在自适应聚类中,使用改进的聚类方法,利用最大最小距离与类密度的思想,通过自适应聚类策... 针对蚁群算法在求解较大规模旅行商问题时,容易出现陷入局部最优、收敛速度较慢的情况,提出一个融合自适应聚类与母蚁引导策略的蚁群算法(AMACS)。在自适应聚类中,使用改进的聚类方法,利用最大最小距离与类密度的思想,通过自适应聚类策略,获得最佳聚类结果,并快速获得各个类的优化解;利用近邻原则,将相邻的类进行蛛网融合,从而有效提高了初始解的精度。通过母蚁引导策略对初始解进行优化,其中母蚁引导策略包括路径诱导与信息素优化两个部分:路径诱导将初始解设定为第一代的解,提高了算法的稳定性;信息素优化通过对初始解路径进行信息素激励,提高了解的精度。使用随机重组策略对信息素进行重组以及随机激励,使算法尽量跳出局部最优,提高了算法的精度。实验结果表明,提出的算法在求解大规模旅行商问题时,不仅保证了解的精度,而且提高了算法的稳定性。 展开更多
关键词 蚁群算法 聚类算法 旅行商问题 信息素优化 母蚁引导
下载PDF
基于动态熵进化的异构蚁群优化
15
作者 王世科 游晓明 +1 位作者 尹玲 刘升 《电子科技》 2024年第10期6-14,共9页
针对蚁群算法在求解旅行商问题(Traveling Salesman Problem,TSP)时收敛速度慢、求解精度低等问题,文中提出了一种基于动态熵进化的异构蚁群优化算法。该算法中,由蚁群系统(Ant Colony System,ACS)和最大最小蚂蚁系统(Max-Min Ant Syste... 针对蚁群算法在求解旅行商问题(Traveling Salesman Problem,TSP)时收敛速度慢、求解精度低等问题,文中提出了一种基于动态熵进化的异构蚁群优化算法。该算法中,由蚁群系统(Ant Colony System,ACS)和最大最小蚂蚁系统(Max-Min Ant System,MMAS)构成异构双种群,实现种群间优势互补。文中提出动态熵进化策略,通过信息熵来动态控制种群间的交流频率,并将两个种群各自最优解的公共路径的信息素进行融合,以调节低熵种群最优路径上的信息素分布,进而有效保留两个种群的历史搜索信息以及加快算法收敛。将低熵种群最优解的非公共路径进行伪初始化,以扩大其在较优解附近的搜索范围,提高解的精度,从而实现两个种群的协同进化。仿真实验结果表明,所提算法在求解大规模旅行商问题时能有效平衡算法多样性与收敛性之间的关系。 展开更多
关键词 蚁群优化 异构种群 多样性 动态熵 协同进化 信息素融合 伪初始化 旅行商问题
下载PDF
基于改进蚁群优化算法的AGV路径规划 被引量:2
16
作者 陈岁繁 王浈元 李其朋 《浙江科技学院学报》 CAS 2024年第1期59-67,共9页
【目的】针对传统蚁群算法(ant colonyalgorithm, ACA)在移动机器人(automatic guided vehicle, AGV)路径规划中搜索效率低、寻找路径长、拐点个数多等问题,提出一种改进的蚁群优化算法(ant colony optimization, ACO)。【方法】首先,... 【目的】针对传统蚁群算法(ant colonyalgorithm, ACA)在移动机器人(automatic guided vehicle, AGV)路径规划中搜索效率低、寻找路径长、拐点个数多等问题,提出一种改进的蚁群优化算法(ant colony optimization, ACO)。【方法】首先,在蚁群算法中加入预估代价值策略来改进启发函数,增强目标点的引导作用,提升搜索效率;然后,结合狼群算法(wolf pack algorithm, WPA)分配机制来更新信息素,解决路径规划时易陷入局部最优的问题;接着加入拐点影响因子来降低路径拐点;最后,采用动态避障策略来解决死锁问题。【结果】运用改进蚁群优化算法后,移动机器人路径规划时,最佳路径长度、迭代次数和拐点数等比传统算法分别降低9.7%、57.8%、65.0%。【结论】本研究结果能为移动机器人在复杂环境下的路径选择提供重要参考。 展开更多
关键词 蚁群优化算法 搜索效率 信息素 死锁 移动机器人
下载PDF
改进型蚁群算法在快递配送路径规划中的应用
17
作者 赵海旭 韦文山 刘通 《计算机应用文摘》 2024年第12期68-70,73,共4页
随着快递运输行业的快速发展,人们对配送时效性提出了更高的要求。因此,亟须设计一种速度快、精度高的算法优化快递配送路线。文章采用动态信息素因子与启发函数因子优化等策略,将改进之后的蚁群算法引入快递配送路径规划问题。研究结... 随着快递运输行业的快速发展,人们对配送时效性提出了更高的要求。因此,亟须设计一种速度快、精度高的算法优化快递配送路线。文章采用动态信息素因子与启发函数因子优化等策略,将改进之后的蚁群算法引入快递配送路径规划问题。研究结果表明,改进型蚁群算法能够更高效地找出最佳配送方案,并优化了易陷入局部最优的问题,达到了提升路径规划精准度及配送效率的目的。 展开更多
关键词 蚁群算法 路径规划 快递配送 信息素优化
下载PDF
基于动态自适应蚁群优化算法的移动机器人路径规划
18
作者 聂清彬 《计算机应用》 CSCD 北大核心 2024年第S01期351-354,共4页
针对传统蚁群优化(ACO)算法在移动机器人路径规划中存在易陷入局部最优、优化速度慢、搜索路径停滞、获取的最优解质量差、优化路径太长等问题,提出动态自适应蚁群优化(DSA-ACO)算法用于移动机器人全局路径规划。在传统ACO算法基础上融... 针对传统蚁群优化(ACO)算法在移动机器人路径规划中存在易陷入局部最优、优化速度慢、搜索路径停滞、获取的最优解质量差、优化路径太长等问题,提出动态自适应蚁群优化(DSA-ACO)算法用于移动机器人全局路径规划。在传统ACO算法基础上融合了A*算法,改进了传统ACO算法当中的期望启发信息,加入可能陷入U型障碍物陷阱的防死锁机制,改进信息素更新方式,包括:利用最大最小蚂蚁系统设置信息素浓度的最大最小值,防止搜索出现停滞现象;加入动态调整因子动态增强最优路径上的信息素浓度,降低较差路径上的信息素浓度,使得后续蚂蚁的选择方向更明确,引导蚂蚁朝全局最优路径上移动,加速算法收敛。仿真实验结果表明:改进算法的收敛速度比传统ACO算法提高了20%以上,验证了改进算法的可行性、有效性和优越性。 展开更多
关键词 移动机器人 蚁群优化算法 路径规划 自适应调整 信息素
下载PDF
求解时间依赖型绿色车辆路径问题的算法研究
19
作者 葛非 闵珊 +2 位作者 邱含 代振阳 杨智敏 《计算机工程》 CAS CSCD 北大核心 2024年第4期1-10,共10页
蚁群优化(ACO)算法是一种模拟自然界蚂蚁寻找食物路径的优化算法,能够在动态变化的环境中无需任何外部指导或控制解决几何分布的非确定性多项式(NP)-Hard组合问题。针对ACO算法在求解NP-Hard问题时容易陷入局部最优、搜索的深度与广度... 蚁群优化(ACO)算法是一种模拟自然界蚂蚁寻找食物路径的优化算法,能够在动态变化的环境中无需任何外部指导或控制解决几何分布的非确定性多项式(NP)-Hard组合问题。针对ACO算法在求解NP-Hard问题时容易陷入局部最优、搜索的深度与广度之间难以平衡等问题,提出一种绿色智能进化蚁群优化(G-IEACO)算法。引入4种邻域操作算子,改进ACO算法的状态转移规则和信息素更新方式,以增强寻优性能并防止过早收敛,同时采用规避拥堵策略,平衡时间成本和环境成本。应用Solomon标准测试集中不同规模的算例进行仿真实验,数值分析结果表明,G-IEACO算法在处理车辆总行驶时间(TT)和车辆碳排放量(TCO_(2))方面优于遗传算法(GA),在客户规模为100的R2类和RC2类算例中平均降低了13.32%的TT和13.64%的TCO_(2),有效地促进了绿色低碳目标的实现。 展开更多
关键词 蚁群优化算法 操作算子 状态转移 信息素更新 规避拥堵策略
下载PDF
动态SHO-ACO的焊接机器人路径规划
20
作者 任红格 宋雪琪 史涛 《机械设计与制造》 北大核心 2024年第7期1-5,共5页
移动焊接机器人在户外进行路径规划时的高效性和安全性尤为重要。针对蚁群算法(ACO)信息素以总长度为单个影响因子的缺陷,加入转向次数要素,建立环境适应度函数,从而改进轨迹上信息素增值状况;针对基本蚁群收敛速度慢的问题,借鉴自私羊... 移动焊接机器人在户外进行路径规划时的高效性和安全性尤为重要。针对蚁群算法(ACO)信息素以总长度为单个影响因子的缺陷,加入转向次数要素,建立环境适应度函数,从而改进轨迹上信息素增值状况;针对基本蚁群收敛速度慢的问题,借鉴自私羊群算法(SHO)的空间因素,改进启发函数;针对局部最优问题,将SHO的吸引力函数融入信息素变化中再结合环境适应度函数,动态指引蚁群朝向更加优良的轨迹前行;而且针对停滞僵局问题,提出撤离行动与预警行动,确保蚂蚁探路效率;针对传统轮转方法随机性问题,提出了评判拐弯机制以在有目的选择下一节点的同时,计算路径距离方法,降低了算法的复杂程度。SHO-ACO与势场蚁群和传统蚁群算法进行仿真对比实验,结果表明,SHO-ACO在简单环境与复杂环境中均具有优越性。 展开更多
关键词 移动焊接机器人 路径规划 自私羊群优化算法 蚁群算法 环境适应度函数 信息素更新 评判拐弯机制
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部