Ant colony optimization (ACO) has been proved to be one of the best performing algorithms for NP-hard problems as TSP. The volatility rate of pheromone trail is one of the main parameters in ACO algorithms. It is usua...Ant colony optimization (ACO) has been proved to be one of the best performing algorithms for NP-hard problems as TSP. The volatility rate of pheromone trail is one of the main parameters in ACO algorithms. It is usually set experimentally in the literatures for the application of ACO. The present paper first proposes an adaptive strategy for the volatility rate of pheromone trail according to the quality of the solutions found by artificial ants. Second, the strategy is combined with the setting of other parameters to form a new ACO method. Then, the proposed algorithm can be proved to converge to the global optimal solution. Finally, the experimental results of computing traveling salesman problems and film-copy deliverer problems also indicate that the proposed ACO approach is more effective than other ant methods and non-ant methods.展开更多
Adaptability and dynamicity are special properties of social insects derived from the decentralized behavior of the insects. Authors have come up with designs for software solution that can regulate traffic congestion...Adaptability and dynamicity are special properties of social insects derived from the decentralized behavior of the insects. Authors have come up with designs for software solution that can regulate traffic congestion in a network transportation environment. The effectiveness of various researches on traffic management has been verified through appropriate metrics. Most of the traffic management systems are centered on using sensors, visual monitoring and neural networks to check for available parking space with the aim of informing drivers beforehand to prevent traffic congestion. There has been limited research on solving ongoing traffic congestion in congestion prone areas like car park with any of the common methods mentioned. This study focus however is on a motor park, as a highly congested area when it comes to traffic. The car park has two entrance gate and three exit gates which is divided into three Isle of parking lot where cars can park. An ant colony optimization algorithm (ACO) was developed as an effective management system for controlling navigation and vehicular traffic congestion problems when cars exit a motor park. The ACO based on the nature and movement of the natural ants, simulates the movement of cars out of the car park through their nearest choice exit. A car park simulation was also used for the mathematical computation of the pheromone. The system was implemented using SIMD because of its dual parallelization ability. The result showed about 95% increase on the number of vehicles that left the motor park in one second. A clear indication that pheromones are large determinants of the shortest route to take as cars followed the closest exit to them. Future researchers may consider monitoring a centralized tally system for cars coming into the park through a censored gate being.展开更多
This paper presents an application of an Ant Colony Optimization (ACO) algorithm to optimize the parameters in the design of a type of nonlinear PID controller. The ACO algorithm is a novel heuristic bionic algorith...This paper presents an application of an Ant Colony Optimization (ACO) algorithm to optimize the parameters in the design of a type of nonlinear PID controller. The ACO algorithm is a novel heuristic bionic algorithm, which is based on the behaviour of real ants in nature searching for food. In order to optimize the parameters of the nonlinear PID controller using ACO algorithm, an objective function based on position tracing error was constructed, and elitist strategy was adopted in the improved ACO algorithm. Detailed simulation steps are presented. This nonlinear PID controller using the ACO algorithm has high precision of control and quick response.展开更多
Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is pr...Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-function-based heuristic pheromone assignment approach for pheromone update to filtrate solution candidates.Global optimal solutions can be reached more rapidly by self-adjusting the path searching behaviors of the ants according to objective values. The performance of the proposed algorithm is compared with a basic ant colony algorithm and a Square Quadratic Programming approach in solving two benchmark problems with multiple extremes. The results indicated that the efficiency and reliability of the proposed algorithm were greatly improved.展开更多
Ant colony optimization (ACO) algorithm was modified to optimize the global path. In order to simulate the real ant colonies, according to the foraging behavior of ant colonies and the characteristic of food, concepti...Ant colony optimization (ACO) algorithm was modified to optimize the global path. In order to simulate the real ant colonies, according to the foraging behavior of ant colonies and the characteristic of food, conceptions of neighboring area and smell area were presented. The former can ensure the diversity of paths and the latter ensures that each ant can reach the goal. Then the whole path was divided into three parts and ACO was used to search the second part path. When the three parts pathes were adjusted, the final path was found. The valid path and invalid path were defined to ensure the path valid. Finally, the strategies of the pheromone search were applied to search the optimum path. However, when only the pheromone was used to search the optimum path, ACO converges easily. In order to avoid this premature convergence, combining pheromone search and random search, a hybrid ant colony algorithm(HACO) was used to find the optimum path. The comparison between ACO and HACO shows that HACO can be used to find the shortest path.展开更多
This paper proposes a Hybridized Ant Colony Optimization (HACO) algorithm. It integrates the advantages of Ant System (AS) and Ant Colony System (ACS) of solving optimization problems. The main focus and core of the H...This paper proposes a Hybridized Ant Colony Optimization (HACO) algorithm. It integrates the advantages of Ant System (AS) and Ant Colony System (ACS) of solving optimization problems. The main focus and core of the HACO algorithm are based on annexing the strengths of the AS, ACO and the Max-Min Ant System (MMAS) previously proposed by various researchers at one time or the order. In this paper, the HACO algorithm for solving optimization problems employs new Transition Probability relations with a Jump transition probability relation which indicates the point or path at which the desired optimum value has been met. Also, it brings to play a new pheromone updating rule and introduces the pheromone evaporation residue that calculates the amount of pheromone left after updating which serves as a guide to the successive ant traversing the path and diverse local search approaches. Regarding the computational efficiency of the HACO algorithm, we observe that the HACO algorithm can find very good solutions in a short time, as the algorithm has been tested on a number of combinatorial optimization problems and results shown to compare favourably with analytical results. This strength can be combined with other metaheuristic approaches in the future work to solve complex combinatorial optimization problems.展开更多
In solving small- to medium-scale travelling salesman problems (TSPs) of both symmetric and asymmetric types, the traditional ant colony optimization (ACO) algorithm could work well, providing high accuracy and sa...In solving small- to medium-scale travelling salesman problems (TSPs) of both symmetric and asymmetric types, the traditional ant colony optimization (ACO) algorithm could work well, providing high accuracy and satisfactory efficiency. However, when the scale of the TSP increases, ACO, a heuristic algorithm, is greatly challenged with respect to accuracy and efficiency. A novel pheromone-trail updating strategy that moderately reduces the iteration time required in real optimization problem-solving is proposed. In comparison with the traditional strategy of the ACO in several experiments, the proposed strategy shows advantages in performance. Therefore, this strategy of pheromone-trail updating is proposed as a valuable approach that reduces the time-complexity and increases its efficiency with less iteration time in real optimization applications. Moreover, this strategy is especially applicable in solving the moderate large-scale TSPs based on ACO.展开更多
Wireless sensor networks(WSNs)have become increasingly popular due to the rapid growth of the Internet of Things.As open wireless transmission media are easy to attack,security is one of the primary design concerns fo...Wireless sensor networks(WSNs)have become increasingly popular due to the rapid growth of the Internet of Things.As open wireless transmission media are easy to attack,security is one of the primary design concerns for WSNs.Current solutions consider routing and data encryption as two isolated issues,providing incomplete security.Therefore,in this paper,we divide the WSN communication process into a data path selection phase and a data encryption phase.We propose an improved transmission method based on ant colony optimization(ACO)and threshold proxy re-encryption for WSNs,and we named it as ACOTPRE.The method resists internal and external attacks and ensures safe and efficient data transmission.In the data path selection stage,the ACO algorithm is used for network routing.The improvement of the pheromone concentration is proposed.In order to resist attacks from external attackers,proxy re-encryption is extended to WSN in the data encryption stage.The threshold secret sharing algorithm is introduced to generate a set of re-encryption key fragments composed of random numbers at the source node.We confirm the performance of our model via simulation studies.展开更多
In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this stud...In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable.展开更多
Ant colony algorithm has good results in finding the optimal solution in a certain field;and image edge detection is an essential foundation for all kinds of image processing. How to improve image edge detection becom...Ant colony algorithm has good results in finding the optimal solution in a certain field;and image edge detection is an essential foundation for all kinds of image processing. How to improve image edge detection becomes a hot topic in image processing. In this paper, the ant colony algorithm is applied to image edge detection, and the ant colony algorithm’s discreteness, parallelism and positive feedback are fully utilized. Through repeated iteration, pheromone acquisition and pheromone matrix were continuously updated to search for images step by step. The experimental results show that the ant colony algorithm can effectively detect the edge of the image, and the detection effect of the algorithm is significantly improved compared with the Roberts algorithm.展开更多
To find the optimal routing is always an important topic in wireless sensor networks (WSNs). Considering a WSN where the nodes have limited energy, we propose a novel Energy*Delay model based on ant algorithms ("...To find the optimal routing is always an important topic in wireless sensor networks (WSNs). Considering a WSN where the nodes have limited energy, we propose a novel Energy*Delay model based on ant algorithms ("E&D ANTS" for short) to minimize the time delay in transferring a fixed number of data packets in an energy-constrained manner in one round. Our goal is not only to maximize the lifetime of the network but also to provide real-time data transmission services. However, because of the tradeoff of energy and delay in wireless network systems, the reinforcement learning (RL) algorithm is introduced to train the model. In this survey, the paradigm of E&D ANTS is explicated and compared to other ant-based routing algorithms like AntNet and AntChain about the issues of routing information, routing overhead and adaptation. Simulation results show that our method performs about seven times better than AntNet and also outperforms AntChain by more than 150% in terms of energy cost and delay per round.展开更多
文摘Ant colony optimization (ACO) has been proved to be one of the best performing algorithms for NP-hard problems as TSP. The volatility rate of pheromone trail is one of the main parameters in ACO algorithms. It is usually set experimentally in the literatures for the application of ACO. The present paper first proposes an adaptive strategy for the volatility rate of pheromone trail according to the quality of the solutions found by artificial ants. Second, the strategy is combined with the setting of other parameters to form a new ACO method. Then, the proposed algorithm can be proved to converge to the global optimal solution. Finally, the experimental results of computing traveling salesman problems and film-copy deliverer problems also indicate that the proposed ACO approach is more effective than other ant methods and non-ant methods.
文摘Adaptability and dynamicity are special properties of social insects derived from the decentralized behavior of the insects. Authors have come up with designs for software solution that can regulate traffic congestion in a network transportation environment. The effectiveness of various researches on traffic management has been verified through appropriate metrics. Most of the traffic management systems are centered on using sensors, visual monitoring and neural networks to check for available parking space with the aim of informing drivers beforehand to prevent traffic congestion. There has been limited research on solving ongoing traffic congestion in congestion prone areas like car park with any of the common methods mentioned. This study focus however is on a motor park, as a highly congested area when it comes to traffic. The car park has two entrance gate and three exit gates which is divided into three Isle of parking lot where cars can park. An ant colony optimization algorithm (ACO) was developed as an effective management system for controlling navigation and vehicular traffic congestion problems when cars exit a motor park. The ACO based on the nature and movement of the natural ants, simulates the movement of cars out of the car park through their nearest choice exit. A car park simulation was also used for the mathematical computation of the pheromone. The system was implemented using SIMD because of its dual parallelization ability. The result showed about 95% increase on the number of vehicles that left the motor park in one second. A clear indication that pheromones are large determinants of the shortest route to take as cars followed the closest exit to them. Future researchers may consider monitoring a centralized tally system for cars coming into the park through a censored gate being.
文摘This paper presents an application of an Ant Colony Optimization (ACO) algorithm to optimize the parameters in the design of a type of nonlinear PID controller. The ACO algorithm is a novel heuristic bionic algorithm, which is based on the behaviour of real ants in nature searching for food. In order to optimize the parameters of the nonlinear PID controller using ACO algorithm, an objective function based on position tracing error was constructed, and elitist strategy was adopted in the improved ACO algorithm. Detailed simulation steps are presented. This nonlinear PID controller using the ACO algorithm has high precision of control and quick response.
文摘Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-function-based heuristic pheromone assignment approach for pheromone update to filtrate solution candidates.Global optimal solutions can be reached more rapidly by self-adjusting the path searching behaviors of the ants according to objective values. The performance of the proposed algorithm is compared with a basic ant colony algorithm and a Square Quadratic Programming approach in solving two benchmark problems with multiple extremes. The results indicated that the efficiency and reliability of the proposed algorithm were greatly improved.
基金Projects(60234030, 60404021) supported by the National Natural Science Foundation of China
文摘Ant colony optimization (ACO) algorithm was modified to optimize the global path. In order to simulate the real ant colonies, according to the foraging behavior of ant colonies and the characteristic of food, conceptions of neighboring area and smell area were presented. The former can ensure the diversity of paths and the latter ensures that each ant can reach the goal. Then the whole path was divided into three parts and ACO was used to search the second part path. When the three parts pathes were adjusted, the final path was found. The valid path and invalid path were defined to ensure the path valid. Finally, the strategies of the pheromone search were applied to search the optimum path. However, when only the pheromone was used to search the optimum path, ACO converges easily. In order to avoid this premature convergence, combining pheromone search and random search, a hybrid ant colony algorithm(HACO) was used to find the optimum path. The comparison between ACO and HACO shows that HACO can be used to find the shortest path.
文摘This paper proposes a Hybridized Ant Colony Optimization (HACO) algorithm. It integrates the advantages of Ant System (AS) and Ant Colony System (ACS) of solving optimization problems. The main focus and core of the HACO algorithm are based on annexing the strengths of the AS, ACO and the Max-Min Ant System (MMAS) previously proposed by various researchers at one time or the order. In this paper, the HACO algorithm for solving optimization problems employs new Transition Probability relations with a Jump transition probability relation which indicates the point or path at which the desired optimum value has been met. Also, it brings to play a new pheromone updating rule and introduces the pheromone evaporation residue that calculates the amount of pheromone left after updating which serves as a guide to the successive ant traversing the path and diverse local search approaches. Regarding the computational efficiency of the HACO algorithm, we observe that the HACO algorithm can find very good solutions in a short time, as the algorithm has been tested on a number of combinatorial optimization problems and results shown to compare favourably with analytical results. This strength can be combined with other metaheuristic approaches in the future work to solve complex combinatorial optimization problems.
基金supported by the Fundamental Research Funds for the Central Universities(2015XZD15)the Soft Science Research Project of Guangdong Province(2015A070704015)+1 种基金the Guangdong Province Key Laboratory Open Foundation(2011A06090100101B)the Technology Trading System and Science&Technology Service Network Construction Project of Guangdong Province(2014A040402003)
文摘In solving small- to medium-scale travelling salesman problems (TSPs) of both symmetric and asymmetric types, the traditional ant colony optimization (ACO) algorithm could work well, providing high accuracy and satisfactory efficiency. However, when the scale of the TSP increases, ACO, a heuristic algorithm, is greatly challenged with respect to accuracy and efficiency. A novel pheromone-trail updating strategy that moderately reduces the iteration time required in real optimization problem-solving is proposed. In comparison with the traditional strategy of the ACO in several experiments, the proposed strategy shows advantages in performance. Therefore, this strategy of pheromone-trail updating is proposed as a valuable approach that reduces the time-complexity and increases its efficiency with less iteration time in real optimization applications. Moreover, this strategy is especially applicable in solving the moderate large-scale TSPs based on ACO.
基金This work was supported in part by Beijing Municipal Natural Science Foundation(19L2020)National Key Research and Development Project(Key Technologies and Applications of Security and Trusted Industrial Control System NO.2020YFB2009500).
文摘Wireless sensor networks(WSNs)have become increasingly popular due to the rapid growth of the Internet of Things.As open wireless transmission media are easy to attack,security is one of the primary design concerns for WSNs.Current solutions consider routing and data encryption as two isolated issues,providing incomplete security.Therefore,in this paper,we divide the WSN communication process into a data path selection phase and a data encryption phase.We propose an improved transmission method based on ant colony optimization(ACO)and threshold proxy re-encryption for WSNs,and we named it as ACOTPRE.The method resists internal and external attacks and ensures safe and efficient data transmission.In the data path selection stage,the ACO algorithm is used for network routing.The improvement of the pheromone concentration is proposed.In order to resist attacks from external attackers,proxy re-encryption is extended to WSN in the data encryption stage.The threshold secret sharing algorithm is introduced to generate a set of re-encryption key fragments composed of random numbers at the source node.We confirm the performance of our model via simulation studies.
基金Supported by China Postdoctoral Science Foundation(20090460873)
文摘In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable.
文摘Ant colony algorithm has good results in finding the optimal solution in a certain field;and image edge detection is an essential foundation for all kinds of image processing. How to improve image edge detection becomes a hot topic in image processing. In this paper, the ant colony algorithm is applied to image edge detection, and the ant colony algorithm’s discreteness, parallelism and positive feedback are fully utilized. Through repeated iteration, pheromone acquisition and pheromone matrix were continuously updated to search for images step by step. The experimental results show that the ant colony algorithm can effectively detect the edge of the image, and the detection effect of the algorithm is significantly improved compared with the Roberts algorithm.
基金Project (No. 30470461) supported in part by the National NaturalScience Foundation of China
文摘To find the optimal routing is always an important topic in wireless sensor networks (WSNs). Considering a WSN where the nodes have limited energy, we propose a novel Energy*Delay model based on ant algorithms ("E&D ANTS" for short) to minimize the time delay in transferring a fixed number of data packets in an energy-constrained manner in one round. Our goal is not only to maximize the lifetime of the network but also to provide real-time data transmission services. However, because of the tradeoff of energy and delay in wireless network systems, the reinforcement learning (RL) algorithm is introduced to train the model. In this survey, the paradigm of E&D ANTS is explicated and compared to other ant-based routing algorithms like AntNet and AntChain about the issues of routing information, routing overhead and adaptation. Simulation results show that our method performs about seven times better than AntNet and also outperforms AntChain by more than 150% in terms of energy cost and delay per round.