Abstract Instagram is a popular photo-sharing social ap- plication. It is widely used by tourists to record their journey information such as location, time and interest. Consequently, a huge volume of get-tagged phot...Abstract Instagram is a popular photo-sharing social ap- plication. It is widely used by tourists to record their journey information such as location, time and interest. Consequently, a huge volume of get-tagged photos with spatio-temporal in- formation are generated along tourist's travel trajectories. Such Instagram photo trajectories consist of travel paths, travel density distributions, and traveller behaviors, prefer- ences, and mobility patterns. Mining Instagram photo trajec- tories is thus very useful for many mobile and location-based social applications, including tour guide and recommender systems. However, we have not found any work that extracts interesting group-like travel trajectories from Instagram pho- tos asynchronously taken by different tourists. Motivated by this, we propose a novel concept: coterie, which reveals representative travel trajectory patterns hidden in Instagram photos taken by users at shared locations and paths. Our work includes the discovery of (1) coteries, (2) closed co- teries, and (3) the recommendation of popular travel routes based on closed coteries. For this, we first build a statistically reliable trajectory database from Instagram get-tagged pho- tos. These trajectories are then clustered by the DBSCAN method to find tourist density. Next, we transform each raw spatio-temporal trajectory into a sequence of clusters. All dis- criminative closed coteries are further identified by a Cluster- Growth algorithm. Finally, distance-aware and conformity- aware recommendation strategies are applied on closed co- teries to recommend popular tour routes. Visualized demosand extensive experimental results demonstrate the effective- ness and efficiency of our methods.展开更多
文摘Abstract Instagram is a popular photo-sharing social ap- plication. It is widely used by tourists to record their journey information such as location, time and interest. Consequently, a huge volume of get-tagged photos with spatio-temporal in- formation are generated along tourist's travel trajectories. Such Instagram photo trajectories consist of travel paths, travel density distributions, and traveller behaviors, prefer- ences, and mobility patterns. Mining Instagram photo trajec- tories is thus very useful for many mobile and location-based social applications, including tour guide and recommender systems. However, we have not found any work that extracts interesting group-like travel trajectories from Instagram pho- tos asynchronously taken by different tourists. Motivated by this, we propose a novel concept: coterie, which reveals representative travel trajectory patterns hidden in Instagram photos taken by users at shared locations and paths. Our work includes the discovery of (1) coteries, (2) closed co- teries, and (3) the recommendation of popular travel routes based on closed coteries. For this, we first build a statistically reliable trajectory database from Instagram get-tagged pho- tos. These trajectories are then clustered by the DBSCAN method to find tourist density. Next, we transform each raw spatio-temporal trajectory into a sequence of clusters. All dis- criminative closed coteries are further identified by a Cluster- Growth algorithm. Finally, distance-aware and conformity- aware recommendation strategies are applied on closed co- teries to recommend popular tour routes. Visualized demosand extensive experimental results demonstrate the effective- ness and efficiency of our methods.