期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Active tuning of anisotropic phonon polaritons in natural van der Waals crystals with negative permittivity substrates and its application in energy transport
1
作者 Shuo Chen Xiaohu Wu Ceji Fu 《Opto-Electronic Science》 2024年第6期1-19,共19页
Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,includ... Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,including their directional propagation,are inherently determined by the anisotropic crystal structure of the host materials.Although in-plane anisotropic PhPs can be manipulated by twisting engineering,such as twisting individual vdW slabs,dynamically adjusting their propagation presents a significant challenge.The limited application of the twisted bilayer structure in bare films further restricts its usage.In this study,we present a technique in which anisotropic PhPs supported by bare biaxial vdW slabs can be actively tuned by modifying their local dielectric environment.Excitingly,we predict that the iso-frequency contour of PhPs can be reoriented to enable propagation along forbidden directions when the crystal is placed on a substrate with a moderate negative permittivity.Besides,we systematically investigate the impact of polaritonic coupling on near-field radiative heat transfer(NFRHT)between heterostructures integrated with different substrates that have negative permittivity.Our main findings reveal that through the analysis of dispersion contour and photon transmission coefficient,the excitation and reorientation of the fundamental mode facilitate increased photon tunneling,thereby enhancing heat transfer between heterostructures.Conversely,the annihilation of the fundamental mode hinders heat transfer.Furthermore,we find the enhancement or suppression of radiative energy transport depends on the relative magnitude of the slab thickness and the vacuum gap width.Finally,the effect of negative permittivity substrates on NFRHT along the[001]crystalline direction ofα-MoO3 is considered.The spectral band where the excited fundamental mode resulting from the negative permittivity substrates is shifted to the first Reststrahlen Band(RB 1)ofα-MoO_(3) and is widened,resulting in more significant enhancement of heat flux from RB 1.We anticipate our results will motivate new direction for dynamical tunability of the PhPs in photonic devices. 展开更多
关键词 anisotropic phonon polaritons forbidden direction substrate with a negative permittivity near-field energy transport
下载PDF
Super-Planckian thermal radiation enabled by hyperbolic surface phonon polaritons 被引量:1
2
作者 LIU XiangLei XUAN YiMin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第11期1680-1686,共7页
Excitation of surface resonance modes and presence of resonance-free hyperbolic modes are two common ways to enhance the near-field radiative energy transport, which can find wide applications in noncontact thermal ma... Excitation of surface resonance modes and presence of resonance-free hyperbolic modes are two common ways to enhance the near-field radiative energy transport, which can find wide applications in noncontact thermal management and energy harvesting.Here, we identify another way to achieve the super-Planckian thermal radiation via hyperbolic surface phonon polaritons(HSPhPs). Based on the fluctuation-dissipation theory, the near-field radiative heat flux between bulk hexagonal boron nitride(hBN) planes with the optical axis perpendicular to the radiative energy flow can be 120 times as large as the blackbody limit for a gap distance of 20 nm. When the film thickness is reduced to 10 nm, the radiative heat flux is found to increase by 26.3%.The underlying mechanism is attributed to the coupling of Type I HSPhPs inside the anisotropic hBN film, which improves the energy transmission coefficient over a broad wavevector space especially for waves with extremely high wavevectors. This work helps to deepen the understanding of near-field radiation between natural hyperbolic materials, and opens a new route to enhance the near-field thermal radiation. 展开更多
关键词 near-field thermal radiation hyperbolic surface phonon polaritons hexagonal boron nitride
原文传递
Omnidirectional and compact Tamm phonon-polaritons enhanced mid-infrared absorber
3
作者 Xiaomin Hua Gaige Zheng +2 位作者 Fenglin Xian Dongdong Xu Shengyao Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第8期360-363,共4页
Narrow band mid-infrared(MIR)absorption is highly desired in thermal emitter and sensing applications.We theoretically demonstrate that the perfect absorption at infrared frequencies can be achieved and controlled aro... Narrow band mid-infrared(MIR)absorption is highly desired in thermal emitter and sensing applications.We theoretically demonstrate that the perfect absorption at infrared frequencies can be achieved and controlled around the surface phonon resonance frequency of silicon carbide(SiC).The photonic heterostructure is composed of a distributed Bragg reflector(DBR)/germanium(Ge)cavity/SiC on top of a Ge substrate.Full-wave simulation results illustrate that the Tamm phonon-polaritons electric field can locally concentrate between the Ge cavity and the SiC film,contributed to the improved light-phonon interactions with an enhancement of light absorption.The structure has planar geometry and does not require nano-patterning to achieve perfect absorption of both polarizations of the incident light in a wide range of incident angles.Their absorption lines are tunable via engineering of the photon band-structure of the dielectric photonic nanostructures to achieve reversal of the geometrical phase across the interface with the plasmonic absorber. 展开更多
关键词 perfect absorption surface phonon polaritons MID-INFRARED distributed Bragg reflector
下载PDF
Manipulation of surface phonon polaritons in Si C nanorods 被引量:5
4
作者 Yuehui Li Ruishi Qi +2 位作者 Ruochen Shi Ning Li Peng Gao 《Science Bulletin》 SCIE EI CAS CSCD 2020年第10期820-826,M0004,共8页
Surface phonon polaritons(SPh Ps) are potentially very attractive for subwavelength control and manipulation of light at the infrared to terahertz wavelengths. Probing their propagation behavior in nanostructures is c... Surface phonon polaritons(SPh Ps) are potentially very attractive for subwavelength control and manipulation of light at the infrared to terahertz wavelengths. Probing their propagation behavior in nanostructures is crucial to guide rational device design. Here, aided by monochromatic scanning transmission electron microscopy-electron energy loss spectroscopy technique, we measure the dispersion relation of SPh Ps in individual Si C nanorods and reveal the effects of size and shape. We find that the SPh Ps can be modulated by the geometric shape and size of Si C nanorods. The energy of SPh Ps shows redshift with decreasing radius and the surface optical phonon is mainly concentrated on the surface with large radius. Therefore, the fields can be precisely confined in specific positions by varying the size of the nanorod, allowing effective tuning at nanometer scale. The findings of this work are in agreement with dielectric response theory and numerical simulation, and provide novel strategies for manipulating light in polar dielectrics through shape and size control, enabling the design of novel nanoscale phononphotonic devices. 展开更多
关键词 Surface phonon polariton NANOPHOTONICS NANOSTRUCTURE Geometry manipulation phononic materials
原文传递
Giant and controllable Goos—Hänchen shift of a reflective beam off a hyperbolic metasurface of polar crystals
5
作者 薛天 李宇博 +5 位作者 宋浩元 王相光 张强 付淑芳 周胜 王选章 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期428-435,共8页
We conduct a theoretical analysis of the massive and tunable Goos–Hänchen(GH) shift on a polar crystal covered with periodical black phosphorus(BP)-patches in the THz range. The surface plasmon phonon polaritons... We conduct a theoretical analysis of the massive and tunable Goos–Hänchen(GH) shift on a polar crystal covered with periodical black phosphorus(BP)-patches in the THz range. The surface plasmon phonon polaritons(SPPPs), which are coupled by the surface phonon polaritons(SPh Ps) and surface plasmon polaritons(SPPs), can greatly increase GH shifts.Based on the in-plane anisotropy of BP, two typical metasurface models are designed and investigated. An enormous GH shift of about-7565.58 λ_(0) is achieved by adjusting the physical parameters of the BP-patches. In the designed metasurface structure, the maximum sensitivity accompanying large GH shifts can reach about 6.43 × 10^(8) λ_(0)/RIU, which is extremely sensitive to the size, carrier density, and layer number of BP. Compared with a traditional surface plasmon resonance sensor, the sensitivity is increased by at least two orders of magnitude. We believe that investigating metasurface-based SPPPs sensors could lead to high-sensitivity biochemical detection applications. 展开更多
关键词 Goos–H?nchen shift black phosphorus surface plasmon phonon polaritons sensitivity metasurfaces
下载PDF
Near-field radiative heat transfer between nanoporous GaN films
6
作者 韩晓政 张纪红 +2 位作者 刘皓佗 吴小虎 冷惠文 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期109-120,共12页
Photon tunneling effects give rise to surface waves,amplifying radiative heat transfer in the near-field regime.Recent research has highlighted that the introduction of nanopores into materials creates additional path... Photon tunneling effects give rise to surface waves,amplifying radiative heat transfer in the near-field regime.Recent research has highlighted that the introduction of nanopores into materials creates additional pathways for heat transfer,leading to a substantial enhancement of near-field radiative heat transfer(NFRHT).Being a direct bandgap semiconductor,GaN has high thermal conductivity and stable resistance at high temperatures,and holds significant potential for applications in optoelectronic devices.Indeed,study of NFRHT between nanoporous GaN films is currently lacking,hence the physical mechanism for adding nanopores to GaN films remains to be discussed in the field of NFRHT.In this work,we delve into the NFRHT of GaN nanoporous films in terms of gap distance,GaN film thickness and the vacuum filling ratio.The results demonstrate a 27.2%increase in heat flux for a 10 nm gap when the nanoporous filling ratio is 0.5.Moreover,the spectral heat flux exhibits redshift with increase in the vacuum filling ratio.To be more precise,the peak of spectral heat flux moves fromω=1.31×10^(14)rad·s^(-1)toω=1.23×10^(14)rad·s^(-1)when the vacuum filling ratio changes from f=0.1 to f=0.5;this can be attributed to the excitation of surface phonon polaritons.The introduction of graphene into these configurations can highly enhance the NFRHT,and the spectral heat flux exhibits a blueshift with increase in the vacuum filling ratio,which can be explained by the excitation of surface plasmon polaritons.These findings offer theoretical insights that can guide the extensive utilization of porous structures in thermal control,management and thermal modulation. 展开更多
关键词 near-field radiative heat transfer nanoporous GaN film surface phonon polaritons surface plasmon polaritons
下载PDF
Near-field radiative heat transfer in hyperbolic materials 被引量:3
7
作者 Ruiyi Liu Chenglong Zhou +3 位作者 Yong Zhang Zheng Cui Xiaohu Wu Hongliang Yi 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第3期26-47,共22页
In the post-Moore era, as the energy consumption of micro-nano electronic devices rapidly increases, near-field radiative heat transfer(NFRHT) with super-Planckian phenomena has gradually shown great potential for app... In the post-Moore era, as the energy consumption of micro-nano electronic devices rapidly increases, near-field radiative heat transfer(NFRHT) with super-Planckian phenomena has gradually shown great potential for applications in efficient and ultrafast thermal modulation and energy conversion. Recently, hyperbolic materials, an important class of anisotropic materials with hyperbolic isofrequency contours, have been intensively investigated. As an exotic optical platform, hyperbolic materials bring tremendous new opportunities for NFRHT from theoretical advances to experimental designs. To date, there have been considerable achievements in NFRHT for hyperbolic materials, which range from the establishment of different unprecedented heat transport phenomena to various potential applications. This review concisely introduces the basic physics of NFRHT for hyperbolic materials, lays out the theoretical methods to address NFRHT for hyperbolic materials, and highlights unique behaviors as realized in different hyperbolic materials and the resulting applications. Finally, key challenges and opportunities of the NFRHT for hyperbolic materials in terms of fundamental physics, experimental validations, and potential applications are outlined and discussed. 展开更多
关键词 near-field radiative heat transfer hyperbolic materials photon tunneling hyperbolic phonon polaritons
下载PDF
Extinction mechanisms of hyperbolic h-BN nanodisk
8
作者 Runkun Chen Jianing Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第5期66-69,共4页
We applied the finite element method to calculate the extinction spectrum of single hyperbolic hexagonal boron nitride(h-BN)nanodisk.We show that the hyperbolic h-BN nanodisk exhibits two extinction mechanisms in the ... We applied the finite element method to calculate the extinction spectrum of single hyperbolic hexagonal boron nitride(h-BN)nanodisk.We show that the hyperbolic h-BN nanodisk exhibits two extinction mechanisms in the mid-infrared region.The volume confined phonon polaritons resonances of the nanodisk give rise to a series of weak extinction peaks.The localized surface phonon polaritons lead to a robust dipolar extinction,and the extinction peak position is tunable by varying the size of the h-BN nanodisk.These findings reveal the mechanisms of the interaction between light and resonant h-BN nanodisk,which are essential for h-BN related opto-electromagnetic applications. 展开更多
关键词 extinction spectra hexagonal boron nitride(h-BN) phonon polaritons finite element method
下载PDF
Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit
9
作者 Marta Autore Peining Li +10 位作者 Irene Dolado Francisco J Alfaro-Mozaz Ruben Esteban Ainhoa Atxabal Fèlix Casanova Luis E Hueso Pablo Alonso-González Javier Aizpurua Alexey Y Nikitin Saül Vélez Rainer Hillenbrand 《Light(Science & Applications)》 SCIE EI CAS CSCD 2017年第1期55-62,共8页
Enhanced light-matter interactions are the basis of surface-enhanced infrared absorption(SEIRA)spectroscopy,and conventionally rely on plasmonic materials and their capability to focus light to nanoscale spot sizes.Ph... Enhanced light-matter interactions are the basis of surface-enhanced infrared absorption(SEIRA)spectroscopy,and conventionally rely on plasmonic materials and their capability to focus light to nanoscale spot sizes.Phonon polariton nanoresonators made of polar crystals could represent an interesting alternative,since they exhibit large quality factors,which go far beyond those of their plasmonic counterparts.The recent emergence of van der Waals crystals enables the fabrication of highquality nanophotonic resonators based on phonon polaritons,as reported for the prototypical infrared-phononic material hexagonal boron nitride(h-BN).In this work we use,for the first time,phonon-polariton-resonant h-BN ribbons for SEIRA spectroscopy of small amounts of organic molecules in Fourier transform infrared spectroscopy.Strikingly,the interaction between phonon polaritons and molecular vibrations reaches experimentally the onset of the strong coupling regime,while numerical simulations predict that vibrational strong coupling can be fully achieved.Phonon polariton nanoresonators thus could become a viable platform for sensing,local control of chemical reactivity and infrared quantum cavity optics experiments. 展开更多
关键词 boron nitride phonon polaritons strong coupling surface-enhanced infrared absorption spectroscopy SEIRA
原文传递
Terahertz phonon polariton imaging 被引量:3
10
作者 Qiang Wu Qing-Quan Chen Bin Zhang Jing-Jun Xu 《Frontiers of physics》 SCIE CSCD 2013年第2期217-227,共11页
In this article, we primarily review the time-resolved imaging of THz phonon polariton, which is generated by femtosecond laser in ferroelectric crystal. We pay more attention to the imaging in thin crystal, which can... In this article, we primarily review the time-resolved imaging of THz phonon polariton, which is generated by femtosecond laser in ferroelectric crystal. We pay more attention to the imaging in thin crystal, which can be used as an integration platform for terahertz-optics or terahertz-electrics. The imaging techniques, which can get quantitatively in-focus time-resolved images, are introduced in more detail. They have made enormous progress in recent years, and are powerful tools for the research of phonon polariton, optics, and THz wave. We also briefly introduce the generation principle and general propagation properties of THz phonon polariton. 展开更多
关键词 phonon polariton terahertz wave time-resolved imaging femtosecond laser ferroelectric crystal
原文传递
Interface phonon polariton coupling to enhance grapheneabsorption
11
作者 Zhenyao CHEN Junjie MEI +3 位作者 Ye ZHANG Jishu TAN Qing XIONG Changhong CHEN 《Frontiers of Optoelectronics》 EI CSCD 2021年第4期445-449,共5页
Here we present a graphene photodetector ofwhich the graphene and structural system infraredabsorptions are enhanced by interface phonon polariton(IPhP) coupling. IPhPs are supported at the SiC/AlNinterface of device ... Here we present a graphene photodetector ofwhich the graphene and structural system infraredabsorptions are enhanced by interface phonon polariton(IPhP) coupling. IPhPs are supported at the SiC/AlNinterface of device structure and used to excite interbandtransitions of the intrinsic graphene under gated-fieldtuning. The simulation results show that at normalincidence the absorbance of graphene or system reachesup to 43% or closes to unity in a mid-infrared frequencyrange. In addition, we found the peak-absorption frequencyis mainly decided by the AlN thickness, and it has ared-shift as the thickness decreases. This structure has greatapplication potential in graphene infrared detectiontechnology. 展开更多
关键词 interface phonon polariton(IPhP) infrared absorption enhancement graphene photodetector
原文传递
Review: Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials 被引量:1
12
作者 Amun JARZEMBSKI Cedric SHASKEY Keunhan PARK 《Frontiers in Energy》 SCIE CSCD 2018年第1期43-71,共29页
Vibrational spectroscopy is one of the key instrumentations that provide non-invasive investigation of structural and chemical composition for both organic and inorganic materials. However, diffraction of light funda-... Vibrational spectroscopy is one of the key instrumentations that provide non-invasive investigation of structural and chemical composition for both organic and inorganic materials. However, diffraction of light funda- mentally limits the spatial resolution of far-field vibrational spectroscopy to roughly half the wavelength. In this article, we thoroughly review the integration of atomic force microscopy (AFM) with vibrational spectroscopy to enable the nanoscale characterization of emerging energy materials, which has not been possible with far-field optical techniques. The discussed methods utilize the AFM tip as a nanoscopic tool to extract spatially resolved electronic or molecular vibrational resonance spectra of a sample illuminated by a visible or infrared (IR) light source. The absorption of light by electrons or individual functional groups within molecules leads to changes in the sample's thermal response, optical scattering, and atomic force interactions, all of which can be readily probed by an AFM tip. For example, photothermal induced resonance (PTIR) spectroscopy methods measure a sample's local thermal expansion or temperature rise. Therefore, they use the AFM tip as a thermal detector to directly relate absorbed IR light to the thermal response of a sample. Optical scattering methods based on scanning near-field optical microscopy (SNOM) correlate the spectrum of scattered near-field light with molecular vibrational modes. More recently, photo-induced force microscopy (PiFM) has been developed to measure the change of the optical force gradient due to the light absorption by molecular vibrational resonances using AFM's superb sensitivity in detecting tip-sample force interactions. Such recent efforts successfully breech the diffraction limit of light to provide nanoscale spatial resolution of vibrational spectroscopy,which will become a critical technique for characterizing novel energy materials. 展开更多
关键词 vibrational spectroscopy atomic force micro-scopy photo-thermal induced resonance scanning near-field optical microscopy tip-enhanced Raman spectro-scopy photo-induced force microscopy molecular reso-nances surface phonon polaritons energy materials
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部