期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Application and optimization design of non-obstructive particle damping-phononic crystal vibration isolator in viaduct structure-borne noise reduction
1
作者 SHI Duo-jia ZHAO Cai-you +3 位作者 ZHANG Xin-hao ZHENG Jun-yuan WEI Na-chao WANG Ping 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2513-2531,共19页
The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructi... The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions. 展开更多
关键词 non-obstructive particle damping phononic crystal vibration isolator band gap optimization floating-slab track bridge structure-borne noise control particle swarm optimization
下载PDF
Role of localized phonon vibration in luminescence performance of Pr doped Ba(Mg_(0.28)Zr_(0.16)Ta_(0.56))O_(3)transparent ceramics
2
作者 Zihao Wang Zicheng Wen +3 位作者 Fei Tang Kangzhen Tian Chuandong Zuo Lizhen Zhang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第11期1728-1733,I0003,共7页
Oxygen-assisted high temperature solid-state reaction approach was employed for the fabrication of Pr activated Ba(Mg_(0.28)Zr_(0.16)Ta_(0.56))O_(3)transparent ceramic phosphor.Retiveld refinement of X-ray diffraction... Oxygen-assisted high temperature solid-state reaction approach was employed for the fabrication of Pr activated Ba(Mg_(0.28)Zr_(0.16)Ta_(0.56))O_(3)transparent ceramic phosphor.Retiveld refinement of X-ray diffraction pattern was carried out to reveal the lattice parameters and crystal structural information.Under the blue-light excitation ofλ=473 nm,the phosphor exhibits a sharp intense red emission centered at645 nm,accompanied by several other weak peaks.PL evolution with temperature shows a significant luminescence quenching behavior,and the underlying multi-phonon interaction with optical center is revealed by proposing an unprecedent theoretical calculation work.Such a phonon effect is further confirmed from the red-shift of peak position with temperature,and the involved phonon energy of50.7 meV is determined from Raman scattering measurement.More interestingly,the fitted results of transient-state PL spectra show a fluctuation of luminescence lifetime at various temperatures,further indicating a significant effect of phonon vibration in the system. 展开更多
关键词 Luminescence quenching phonon vibration Oxygen-assisted sintering PBMZT transparent ceramics Rare earths
原文传递
Local resonance phononic band gaps in modifiedtwo-dimensional lattice materials 被引量:3
3
作者 Wei Liu Ji-Wei Chen Xian-Yue Su 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第3期659-669,共11页
In this paper, modified two-dimensional peri- odic lattice materials with local resonance phononic band gaps are designed and investigated. The design concept is to introduce some auxiliary structures into conventiona... In this paper, modified two-dimensional peri- odic lattice materials with local resonance phononic band gaps are designed and investigated. The design concept is to introduce some auxiliary structures into conventional pe- riodic lattice materials. Elastic wave propagation in this kind of modified two-dimensional lattice materials is studied us- ing a combination of Bloch's theorem with finite element method. The calculated frequency band structures of illus- trative modified square lattice materials reveal the existence of frequency band gaps in the low frequency region due to the introduction of the auxiliary structures. The mechanism underlying the occurrence of these frequency band gaps is thoroughly discussed and natural resonances of the auxiliary structures are validated to be the origin. The effect of geo- metric parameters of the auxiliary structures on the width of the local resonance phononic band gaps is explored. Finally, a conceptual broadband vibration-insulating structure based on the modified lattice materials is designed and its capabil- ity is demonstrated. The present work is anticipated to be useful in designing structures which can insulate mechanical vibrations within desired frequency ranges. 展开更多
关键词 Modified lattice materials Bloch's theoremLocal resonance phononic band gaps vibration insulation
下载PDF
Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit–phonon hybrid system
4
作者 Chen Wang Lu-Qin Wang Jie Ren 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第3期17-24,共8页
Counter-rotating-wave terms(CRWTs)are traditionally viewed to be crucial in open small quantum systems with strong system–bath dissipation.Here by exemplifying in a nonequilibrium qubit–phonon hybrid model,we show t... Counter-rotating-wave terms(CRWTs)are traditionally viewed to be crucial in open small quantum systems with strong system–bath dissipation.Here by exemplifying in a nonequilibrium qubit–phonon hybrid model,we show that CRWTs can play the significant role in quantum heat transfer even with weak system–bath dissipation.By using extended coherent phonon states,we obtain the quantum master equation with heat exchange rates contributed by rotating-waveterms(RWTs)and CRWTs,respectively.We find that including only RWTs,the steady state heat current and current fluctuations will be significantly suppressed at large temperature bias,whereas they are strongly enhanced by considering CRWTs in addition.Furthermore,for the phonon statistics,the average phonon number and two-phonon correlation are nearly insensitive to strong qubit–phonon hybridization with only RWTs,whereas they will be dramatically cooled down via the cooperative transitions based on CRWTs in addition.Therefore,CRWTs in quantum heat transfer system should be treated carefully. 展开更多
关键词 quantum transport open systems nonequilibrium and irreversible thermodynamics phonons or vibrational states in low-dimensional structures and nanoscale materials
下载PDF
A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
5
作者 Chen Wang Da-Zhi Xu 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第8期83-95,共13页
We investigate the quantum thermal transistor effect in nonequilibrium three-level systems by applying the polarontransformed Redfield equation combined with full counting statistics.The steady state heat currents are... We investigate the quantum thermal transistor effect in nonequilibrium three-level systems by applying the polarontransformed Redfield equation combined with full counting statistics.The steady state heat currents are obtained via this unified approach over a wide region of system–bath coupling,and can be analytically reduced to the Redfield and nonequilibrium noninteracting blip approximation results in the weak and strong coupling limits,respectively.A giant heat amplification phenomenon emerges in the strong system–bath coupling limit,where transitions mediated by the middle thermal bath are found to be crucial to unravel the underlying mechanism.Moreover,the heat amplification is also exhibited with moderate coupling strength,which can be properly explained within the polaron framework. 展开更多
关键词 quantum transport open systems nonequilibrium and irreversible thermodynamics phonons or vibrational states in low-dimensional structures and nanoscale materials
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部