期刊文献+
共找到538篇文章
< 1 2 27 >
每页显示 20 50 100
Advances of phononics in 2012-2022
1
作者 丁亚飞 朱桂妹 +2 位作者 沈翔瀛 柏雪 李保文 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第12期383-394,共12页
Due to its great potential applications in thermal management,heat control,and quantum information,phononics has gained increasing attentions since the first publication in Rev.Mod.Phys.841045(2012).Many theoretical a... Due to its great potential applications in thermal management,heat control,and quantum information,phononics has gained increasing attentions since the first publication in Rev.Mod.Phys.841045(2012).Many theoretical and experimental progresses have been achieved in the past decade.In this paper,we first give a critical review of the progress in thermal diodes and transistors,especially in classical regime.Then,we give a brief introduction to the new developing research directions such as topological phononics and quantum phononics.In the third part,we discuss the potential applications.Last but not least,we point out the outlook and challenges ahead. 展开更多
关键词 phononics thermal diode thermal transistor thermal control devices
下载PDF
Dynamic response of a thermal transistor to time-varying signals
2
作者 阮琴丽 刘文君 王雷 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期13-19,共7页
Thermal transistor,the thermal analog of an electronic transistor,is one of the most important thermal devices for microscopic-scale heat manipulating.It is a three-terminal device,and the heat current flowing through... Thermal transistor,the thermal analog of an electronic transistor,is one of the most important thermal devices for microscopic-scale heat manipulating.It is a three-terminal device,and the heat current flowing through two terminals can be largely controlled by the temperature of the third one.Dynamic response plays an important role in the application of electric devices and also thermal devices,which represents the devices’ability to treat fast varying inputs.In this paper,we systematically study two typical dynamic responses of a thermal transistor,i.e.,the response to a step-function input(a switching process)and the response to a square-wave input.The role of the length L of the control segment is carefully studied.It is revealed that when L is increased,the performance of the thermal transistor worsens badly.Both the relaxation time for the former process and the cutoff frequency for the latter one follow the power-law dependence on L quite well,which agrees with our analytical expectation.However,the detailed power exponents deviate from the expected values noticeably.This implies the violation of the conventional assumptions that we adopt. 展开更多
关键词 PHONON phononics thermal transistor dynamic response heat conduction
下载PDF
A brief review on the recent development of phonon engineering and manipulation at nanoscales
3
作者 Siqi Xie Hongxin Zhu +1 位作者 Xing Zhang Haidong Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期177-206,共30页
Phonons are the quantum mechanical descriptions of vibrational modes that manifest themselves in many physical properties of condensed matter systems. As the size of electronic devices continues to decrease below mean... Phonons are the quantum mechanical descriptions of vibrational modes that manifest themselves in many physical properties of condensed matter systems. As the size of electronic devices continues to decrease below mean free paths of acoustic phonons, the engineering of phonon spectra at the nanoscale becomes an important topic. Phonon manipulation allows for active control and management of heat fow, enabling functions such as regulated heat transport. At the same time, phonon transmission, as a novel signal transmission method, holds great potential to revolutionize modern industry like microelectronics technology, and boasts wide-ranging applications. Unlike fermions such as electrons, polarity regulation is difficult to act on phonons as bosons, making the development of effective phonon modulation methods a daunting task.This work reviews the development of phonon engineering and strategies of phonon manipulation at different scales, reports the latest research progress of nanophononic devices such as thermal rectifiers, thermal transistors, thermal memories, and thermoelectric devices,and analyzes the phonon transport mechanisms involved. Lastly, we survey feasible perspectives and research directions of phonon engineering. Thermoelectric analogies, external field regulation, and acousto-optic co-optimization are expected to become future research hotspots. 展开更多
关键词 phonon engineering phononic device NANOSCALE
下载PDF
Wide frequency phonons manipulation in Si nanowire by introducing nanopillars and nanoparticles
4
作者 李亚涛 刘英光 +3 位作者 李鑫 李亨宣 王志香 张久意 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期78-84,共7页
The combination of different nanostructures can hinder phonons transmission in a wide frequency range and further reduce the thermal conductivity(TC).This will benefit the improvement and application of thermoelectric... The combination of different nanostructures can hinder phonons transmission in a wide frequency range and further reduce the thermal conductivity(TC).This will benefit the improvement and application of thermoelectric conversion,insulating materials and thermal barrier coatings,etc.In this work,the effects of nanopillars and Ge nanoparticles(GNPs)on the thermal transport of Si nanowire(SN)are investigated by nonequilibrium molecular dynamics(NEMD)simulation.By analyzing phonons transport behaviors,it is confirmed that the introduction of nanopillars leads to the occurrence of lowfrequency phonons resonance,and nanoparticles enhance high-frequency phonons interface scattering and localization.The results show that phonons transport in the whole frequency range can be strongly hindered by the simultaneous introduction of nanopillars and nanoparticles.In addition,the effects of system length,temperature,sizes and numbers of nanoparticles on the TC are investigated.Our work provides useful insights into the effective regulation of the TC of nanomaterials. 展开更多
关键词 resonant structure NANOPARTICLES NANOPILLARS phonon transport thermal conductivity
下载PDF
Theory for Charge Density Wave and Orbital-Flux State in Antiferromagnetic Kagome Metal FeGe
5
作者 马海洋 殷嘉鑫 +1 位作者 M.Zahid Hasan 刘健鹏 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第4期90-104,共15页
We theoretically study the charge order and orbital magnetic properties of a new type of antiferromagnetic kagome metal FeGe.Based on first-principles density functional theory calculations,we study the electronic str... We theoretically study the charge order and orbital magnetic properties of a new type of antiferromagnetic kagome metal FeGe.Based on first-principles density functional theory calculations,we study the electronic structures,Fermi-surface quantum fluctuations,as well as phonon properties of the antiferromagnetic kagome metal FeGe.It is found that charge density wave emerges in such a system due to a subtle cooperation between electron-electron interactions and electron–phonon couplings,which gives rise to an unusual scenario of interaction-triggered phonon instabilities,and eventually yields a charge density wave(CDW)state.We further show that,in the CDW phase,the ground-state current density distribution exhibits an intriguing star-of-David pattern,leading to flux density modulation.The orbital fluxes(or current loops)in this system emerge as a result of the subtle interplay between magnetism,lattice geometries,charge order,and spin-orbit coupling(SOC),which can be described by a simple,yet universal,tight-binding theory including a Kane-Mele-type SOC term and a magnetic exchange interaction.We further study the origin of the peculiar step-edge states in FeGe,which sheds light on the topological properties and correlation effects in this new type of kagome antiferromagnetic material. 展开更多
关键词 interaction PHONON ORBITAL
下载PDF
Thermal transport in composition graded silicene/germanene heterostructures
6
作者 曹增强 王超宇 +2 位作者 张宏岗 游波 倪宇翔 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期49-54,共6页
Through equilibrium and non-equilibrium molecular dynamics simulations,we have demonstrated the inhibitory effect of composition graded interface on thermal transport behavior in lateral heterostructures.Specifically,... Through equilibrium and non-equilibrium molecular dynamics simulations,we have demonstrated the inhibitory effect of composition graded interface on thermal transport behavior in lateral heterostructures.Specifically,we investigated the influence of composition gradient length and heterogeneous particles at the silicene/germanene(SIL/GER)heterostructure interface on heat conduction.Our results indicate that composition graded interface at the interface diminishes the thermal conductivity of the heterostructure,with a further reduction observed as the length increases,while the effect of the heterogeneous particles can be considered negligible.To unveil the influence of composition graded interface on thermal transport,we conducted phonon analysis and identified the presence of phonon localization within the interface composition graded region.Through these analyses,we have determined that the decrease in thermal conductivity is correlated with phonon localization within the heterostructure,where a stronger degree of phonon localization signifies poorer thermal conductivity in the material.Our research findings not only contribute to understanding the impact of interface gradient-induced phonon localization on thermal transport but also offer insights into the modulation of thermal conductivity in heterostructures. 展开更多
关键词 composition graded interface thermal transport phonon localization molecular dynamics
下载PDF
Phonon transport properties of Janus Pb_(2)XAs(X=P,Sb,and Bi)monolayers:A DFT study
7
作者 耿嘉鑫 张培 +1 位作者 汤准韵 欧阳滔 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期71-76,共6页
Grasping the underlying mechanisms behind the low lattice thermal conductivity of materials is essential for the efficient design and development of high-performance thermoelectric materials and thermal barrier coatin... Grasping the underlying mechanisms behind the low lattice thermal conductivity of materials is essential for the efficient design and development of high-performance thermoelectric materials and thermal barrier coating materials.In this paper,we present a first-principles calculations of the phonon transport properties of Janus Pb_(2)PAs and Pb_(2)SbAs monolayers.Both materials possess low lattice thermal conductivity,at least two orders of magnitude lower than graphene and h-BN.The room temperature thermal conductivity of Pb_(2)SbAs(0.91 W/m K)is only a quarter of that of Pb_(2)PAs(3.88 W/m K).We analyze in depth the bonding,lattice dynamics,and phonon mode level information of these materials.Ultimately,it is determined that the synergistic effect of low group velocity due to weak bonding and strong phonon anharmonicity is the fundamental cause of the intrinsic low thermal conductivity in these Janus structures.Relative regular residual analysis further indicates that the four-phonon processes are limited in Pb_(2)PAs and Pb_(2)SbAs,and the three-phonon scattering is sufficient to describe their anharmonicity.In this study,the thermal transport properties of Janus Pb_(2)PAs and Pb_(2)SbAs monolayers are illuminated based on fundamental physical mechanisms,and the low lattice thermal conductivity endows them with the potential applications in the field of thermal barriers and thermoelectrics. 展开更多
关键词 lattice thermal conductivity weak bonding phonon anharmonicity first principles calculations
下载PDF
Phonon resonance modulation in weak van der Waals heterostructures:Controlling thermal transport in graphene-silicon nanoparticle systems
8
作者 李毅 刘一浓 胡世谦 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期96-102,共7页
The drive for efficient thermal management has intensified with the miniaturization of electronic devices.This study explores the modulation of phonon transport within graphene by introducing silicon nanoparticles inf... The drive for efficient thermal management has intensified with the miniaturization of electronic devices.This study explores the modulation of phonon transport within graphene by introducing silicon nanoparticles influenced by van der Waals forces.Our approach involves the application of non-equilibrium molecular dynamics to assess thermal conductivity while varying the interaction strength,leading to a noteworthy reduction in thermal conductivity.Furthermore,we observe a distinct attenuation in length-dependent behavior within the graphene-nanoparticles system.Our exploration combines wave packet simulations with phonon transmission calculations,aligning with a comprehensive analysis of the phonon transport regime to unveil the underlying physical mechanisms at play.Lastly,we conduct transient molecular dynamics simulations to investigate interfacial thermal conductance between the nanoparticles and the graphene,revealing an enhanced thermal boundary conductance.This research not only contributes to our understanding of phonon transport but also opens a new degree of freedom for utilizing van der Waals nanoparticle-induced resonance,offering promising avenues for the modulation of thermal properties in advanced materials and enhancing their performance in various technological applications. 展开更多
关键词 thermal conductivity molecular dynamics phonon resonance van der Waals interaction graphene-silicon nanoparticle heterostructure
下载PDF
Near-field radiative heat transfer between nanoporous GaN films
9
作者 韩晓政 张纪红 +2 位作者 刘皓佗 吴小虎 冷惠文 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期109-120,共12页
Photon tunneling effects give rise to surface waves,amplifying radiative heat transfer in the near-field regime.Recent research has highlighted that the introduction of nanopores into materials creates additional path... Photon tunneling effects give rise to surface waves,amplifying radiative heat transfer in the near-field regime.Recent research has highlighted that the introduction of nanopores into materials creates additional pathways for heat transfer,leading to a substantial enhancement of near-field radiative heat transfer(NFRHT).Being a direct bandgap semiconductor,GaN has high thermal conductivity and stable resistance at high temperatures,and holds significant potential for applications in optoelectronic devices.Indeed,study of NFRHT between nanoporous GaN films is currently lacking,hence the physical mechanism for adding nanopores to GaN films remains to be discussed in the field of NFRHT.In this work,we delve into the NFRHT of GaN nanoporous films in terms of gap distance,GaN film thickness and the vacuum filling ratio.The results demonstrate a 27.2%increase in heat flux for a 10 nm gap when the nanoporous filling ratio is 0.5.Moreover,the spectral heat flux exhibits redshift with increase in the vacuum filling ratio.To be more precise,the peak of spectral heat flux moves fromω=1.31×10^(14)rad·s^(-1)toω=1.23×10^(14)rad·s^(-1)when the vacuum filling ratio changes from f=0.1 to f=0.5;this can be attributed to the excitation of surface phonon polaritons.The introduction of graphene into these configurations can highly enhance the NFRHT,and the spectral heat flux exhibits a blueshift with increase in the vacuum filling ratio,which can be explained by the excitation of surface plasmon polaritons.These findings offer theoretical insights that can guide the extensive utilization of porous structures in thermal control,management and thermal modulation. 展开更多
关键词 near-field radiative heat transfer nanoporous GaN film surface phonon polaritons surface plasmon polaritons
下载PDF
Giant and controllable Goos—Hänchen shift of a reflective beam off a hyperbolic metasurface of polar crystals
10
作者 薛天 李宇博 +5 位作者 宋浩元 王相光 张强 付淑芳 周胜 王选章 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期428-435,共8页
We conduct a theoretical analysis of the massive and tunable Goos–Hänchen(GH) shift on a polar crystal covered with periodical black phosphorus(BP)-patches in the THz range. The surface plasmon phonon polaritons... We conduct a theoretical analysis of the massive and tunable Goos–Hänchen(GH) shift on a polar crystal covered with periodical black phosphorus(BP)-patches in the THz range. The surface plasmon phonon polaritons(SPPPs), which are coupled by the surface phonon polaritons(SPh Ps) and surface plasmon polaritons(SPPs), can greatly increase GH shifts.Based on the in-plane anisotropy of BP, two typical metasurface models are designed and investigated. An enormous GH shift of about-7565.58 λ_(0) is achieved by adjusting the physical parameters of the BP-patches. In the designed metasurface structure, the maximum sensitivity accompanying large GH shifts can reach about 6.43 × 10^(8) λ_(0)/RIU, which is extremely sensitive to the size, carrier density, and layer number of BP. Compared with a traditional surface plasmon resonance sensor, the sensitivity is increased by at least two orders of magnitude. We believe that investigating metasurface-based SPPPs sensors could lead to high-sensitivity biochemical detection applications. 展开更多
关键词 Goos–H?nchen shift black phosphorus surface plasmon phonon polaritons sensitivity metasurfaces
下载PDF
Superconducting state in Ba_((1-x)) Sr_(x)Ni_(2)As_(2) near the quantum critical point
11
作者 余承峰 张宗源 +7 位作者 宋林兴 吴彦玮 袁小秋 侯杰 涂玉兵 侯兴元 李世亮 单磊 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期488-493,共6页
In the phase diagram of the nickel-based superconductor Ba_(1-x)Sr_(x)Ni_(2)As_(2),T_(C) has been found to be enhanced sixfold near the quantum critical point(QCP) x=0.71 compared with the parent compound.However,the ... In the phase diagram of the nickel-based superconductor Ba_(1-x)Sr_(x)Ni_(2)As_(2),T_(C) has been found to be enhanced sixfold near the quantum critical point(QCP) x=0.71 compared with the parent compound.However,the mechanism is still under debate.Here,we report a detailed investigation of the superconducting properties near the QCP(x≈0.7) by utilizing scanning tunneling microscopy and spectroscopy.The temperature-dependent superconducting gap and magnetic vortex state were obtained and analyzed in the framework of the Bardeen-Cooper-Schrieffer model.The ideal isotropic s-wave superconducting gap excludes the long-speculated nematic fluctuations while preferring strong electron-phonon coupling as the mechanism for T_(C) enhancement near the QCP.The lower than expected gap ratio of Δ/(k_(B) T_(C)) is rooted in the fact that Ba_(1-x)Sr_(x)Ni_(2)As_(2) falls into the dirty limit with a serious pair breaking effect similar to the parent compound. 展开更多
关键词 nickel-based superconductor electron–phonon coupling dirty limit scanning tunneling microscopy/spectroscopy
下载PDF
Electrically-driven ultrafast out-of-equilibrium light emission from hot electrons in suspended graphene/hBN heterostructures
12
作者 Qiang Liu Wei Xu +7 位作者 Xiaoxi Li Tongyao Zhang Chengbing Qin Fang Luo Zhihong Zhu Shiqiao Qin Mengjian Zhu Kostya S Novoselov 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期328-338,共11页
Nanoscale light sources with high speed of electrical modulation and low energy consumption are key components for nanophotonics and optoelectronics.The record-high carrier mobility and ultrafast carrier dynamics of g... Nanoscale light sources with high speed of electrical modulation and low energy consumption are key components for nanophotonics and optoelectronics.The record-high carrier mobility and ultrafast carrier dynamics of graphene make it promising as an atomically thin light emitter which can be further integrated into arbitrary platforms by van der Waals forces.However,due to the zero bandgap,graphene is difficult to emit light through the interband recombination of carriers like conventional semiconductors.Here,we demonstrate ultrafast thermal light emitters based on suspended graphene/hexagonal boron nitride(Gr/hBN)heterostructures.Electrons in biased graphene are significantly heated up to 2800 K at modest electric fields,emitting bright photons from the near-infrared to the visible spectral range.By eliminating the heat dissipation channel of the substrate,the radiation efficiency of the suspended Gr/hBN device is about two orders of magnitude greater than that of graphene devices supported on SiO2or hBN.Wefurther demonstrate that hot electrons and low-energy acoustic phonons in graphene are weakly coupled to each other and are not in full thermal equilibrium.Direct cooling ofhigh-temperature hot electrons to low-temperature acoustic phonons is enabled by the significant near-field heat transfer at the highly localized Gr/hBN interface,resulting in ultrafast thermal emission with up to 1 GHz bandwidth under electrical excitation.It is found thatsuspending the Gr/hBN heterostructures on the SiO2trenches significantly modifies the light emission due to the formation of the optical cavity and showed a~440%enhancement inintensity at the peak wavelength of 940 nm compared to the black-body thermal radiation.The demonstration of electrically driven ultrafast light emission from suspended Gr/hBNheterostructures sheds the light on applications of graphene heterostructures in photonicintegrated circuits,such as broadband light sources and ultrafast thermo-optic phase modulators. 展开更多
关键词 suspended graphene ultrafast light emitter van der Waals heterostructures thermal radiation electron–phonon interaction
下载PDF
Sensing the heavy water concentration in an H_(2)O-D_(2)O mixture by solid-solid phononic crystals
13
作者 Mohammadreza Rahimi Ali Bahrami 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期493-498,共6页
A new method based on phononic crystals is presented to detect the concentration of heavy water(D_(2)O)in an H_(2)O-D_(2)O mixture.Results have been obtained and analyzed in the concentration range of 0%-10%and 90%-10... A new method based on phononic crystals is presented to detect the concentration of heavy water(D_(2)O)in an H_(2)O-D_(2)O mixture.Results have been obtained and analyzed in the concentration range of 0%-10%and 90%-100%D_(2)O.A proposed structure of tungsten scatterers in an aluminum host is studied.In order to detect the target material,a cavity region is considered as a sound wave resonator in which the target material with different concentrations of D_(2)O is embedded.By changing the concentration of D_(2)O in the H_(2)O-D_(2)O mixture,the resonance frequency undergoes a frequency shift.Each 1%change in D_(2)O concentration in the H_(2)O-D_(2)O mixture causes a frequency change of about 120 Hz.The finite element method is used as the numerical method to calculate and analyze the natural frequencies and transmission spectra of the proposed sensor.The performance evaluation index shows a high Q factor up to 1475758 and a high sensitivity up to 13075,which are acceptable values for sensing purposes.The other figures of merit related to the detection performance also indicate high-quality performance of the designed sensor. 展开更多
关键词 phononic crystals sensor H_(2)O-D_(2)O mixture CAVITY
下载PDF
On a Heuristic Viewpoint Concerning the Conversion and Transformation of Sound into Light
14
作者 Alessandro Rizzo 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期363-385,共23页
In the study of Terrestrial Gamma-ray Flashes (TGFs) and Sonoluminescence, we observe parallels with larger cosmic events. Specifically, sonoluminescence involves the rapid collapse of bubbles, which closely resembles... In the study of Terrestrial Gamma-ray Flashes (TGFs) and Sonoluminescence, we observe parallels with larger cosmic events. Specifically, sonoluminescence involves the rapid collapse of bubbles, which closely resembles gravitational collapse in space. This observation suggests the potential formation of low-density quantum black holes. These entities, which might be related to dark matter, are thought to experience a kind of transient evaporation similar to Hawking radiation seen in cosmic black holes. Consequently, sonoluminescence could be a valuable tool for investigating phenomena typically linked to cosmic scale events. Furthermore, the role of the Higgs boson is considered in this context, possibly connecting it to both TGFs and sonoluminescence. This research could enhance our understanding of the quantum mechanics of black holes and their relation to dark matter on Earth. 展开更多
关键词 Planck Mass Gravity LIGHT PHONONS Phononic Field Vacuum Hydrodynamics SONOLUMINESCENCE Hawking Radiation Quantum Black Holes Theory of General Singularity
下载PDF
Investigating the Potential of Quasi-One-Dimensional Organic Crystals of TTT(TCNQ)2 for Thermoelectric Applications
15
作者 Silvia Andronic Ionel Sanduleac 《Advances in Materials Physics and Chemistry》 CAS 2024年第1期1-14,共14页
The purpose of this paper is to present the results of investigations on quasi-one-dimensional organic crystals of tetrathiotetracene-tetracyanoquinodi- methane (TTT(TCNQ)<sub>2</sub>) from the prospective... The purpose of this paper is to present the results of investigations on quasi-one-dimensional organic crystals of tetrathiotetracene-tetracyanoquinodi- methane (TTT(TCNQ)<sub>2</sub>) from the prospective of thermoelectric applications. The calculations were performed after analytical expressions, obtained in the frame of a physical model, more detailed than the model presented earlier by authors. The main Hamiltonian of the model includes the electronic and phonon part, electron-phonon interactions and the impurity scattering term. In order to estimate the electric charge transport between the molecular chains, the physical model was upgraded to the so-called three-dimen- sional (3D) physical model. Numeric computations were performed to determine the electrical conductivity, Seebeck coefficient, thermal conductivity, thermoelectric power factor and thermoelectric figure-of-merit as a function on charge carrier concentrations, temperatures and impurity concentrations. A detailed analysis of charge-lattice interaction, consisting of the exploration of the Peierls structural transition in TCNQ molecular chains of TTT(TCNQ)<sub>2</sub> was performed. As result, the critical transition temperature was determined. The dispersion of renormalized phonons was examined in detail. 展开更多
关键词 Organic Materials Tetrathiotetracene-Tetracyanoquinodimethane Thermoelectric Figure of Merit Renormalized Phonon Spectrum Peierls Tran-sition
下载PDF
Research Progress of Underwater Soundabsorbing Material
16
作者 Can Tong Xue Qiu 《Expert Review of Chinese Chemical》 2024年第2期48-52,共5页
This article provides an overview of underwater sound-absorbing materials mainly applied with polyurethane matrix.It mainly elaborates on the underwater sound mecha-nism,commonly used underwater sound-absorbing materi... This article provides an overview of underwater sound-absorbing materials mainly applied with polyurethane matrix.It mainly elaborates on the underwater sound mecha-nism,commonly used underwater sound-absorbing materials and structures,as well as new underwater sound-absorbing material structures derived from local resonance pho-nonic crystals,such as phononic crystals,local resonance phonon wood piles,and meta-material sound-absorbing structures.This provides a broader development space and direction for the future development of underwater sound-absorbing materials. 展开更多
关键词 underwater sound absorption POLYURETHANE local resonance phononic crystal
下载PDF
Dynamical amplification of electric polarization through nonlinear phononics in 2D SnTe
17
作者 Dongbin Shin Shunsuke A.Sato +3 位作者 Hannes Hübener Umberto De Giovannini Noejung Park Angel Rubio 《npj Computational Materials》 SCIE EI CSCD 2020年第1期155-162,共8页
Ultrafast optical control of ferroelectricity using intense terahertz fields has attracted significant interest.Here we show that the nonlinear interactions between two optical phonons in SnTe,a two-dimensional in-pla... Ultrafast optical control of ferroelectricity using intense terahertz fields has attracted significant interest.Here we show that the nonlinear interactions between two optical phonons in SnTe,a two-dimensional in-plane ferroelectric material,enables a dynamical amplification of the electric polarization within subpicoseconds time domain.Our first-principles time-dependent simulations show that the infrared-active out-of-plane phonon mode,pumped to nonlinear regimes,spontaneously generates in-plane motions,leading to rectified oscillations in the in-plane electric polarization.We suggest that this dynamical control of ferroelectric material,by nonlinear phonon excitation,can be utilized to achieve ultrafast control of the photovoltaic or other nonlinear optical responses. 展开更多
关键词 NONLINEAR FERROELECTRIC PHONON
原文传递
Phonon dichroism in proximitized graphene
18
作者 单文语 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期112-117,共6页
We systematically investigate the phonon dichroism in proximitized graphene with broken time-reversal symmetry.We find that in the absence of any type of spin–orbit coupling,phonon dichroism vanishes.Linear and circu... We systematically investigate the phonon dichroism in proximitized graphene with broken time-reversal symmetry.We find that in the absence of any type of spin–orbit coupling,phonon dichroism vanishes.Linear and circular phonon dichroism occur in the presence of uniform(staggered)intrinsic spin–orbit coupling and ferromagnetic(antiferromagnetic)exchange coupling.All these situations can be distinguished by their specific behaviors of phonon absorption at the transition point.Our finding provides new possibilities to use phonon dichroism to identify the form of spin–orbit coupling and exchange coupling in proximitized graphene on various magnetic substrates. 展开更多
关键词 phonon dichroism spin–orbit coupling proximitized graphene electron–phonon interaction
下载PDF
Theoretical analysis of surface waves in piezoelectric medium with periodic shunting circuits
19
作者 Youqi ZHANG Rongyu XIA +2 位作者 Jie XU Kefu HUANG Zheng LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第8期1287-1304,共18页
The investigations of surface waves in the piezoelectric medium bring out great possibility in designing smart surface acoustic wave(SAW)devices.It is important to study the dispersion properties and manipulation mech... The investigations of surface waves in the piezoelectric medium bring out great possibility in designing smart surface acoustic wave(SAW)devices.It is important to study the dispersion properties and manipulation mechanism of surface waves in the semi-infinite piezoelectric medium connected with periodic arrangement of shunting circuits.In this study,the extended Stroh formalism is developed to theoretically analyze the dispersion relations of surface waves under different external circuits.The band structures of both the Rayleigh wave and the Bleustein-Gulyaev(BG)wave can be determined and manipulated with proper electrical boundary conditions.Furthermore,the electromechanical coupling effects on the band structures of surface waves are discussed to figure out the manipulation mechanism of adjusting electric circuit.The results indicate that the proposed method can explain the propagation behaviors of surface waves under the periodic electrical boundary conditions,and can provide an important theoretical guidance for designing novel SAW devices and exploring extensive applications in practice. 展开更多
关键词 METAMATERIAL phononic crystal surface wave PIEZOELECTRICITY electromechanical coupling Stroh formalism
下载PDF
Molecular dynamics study of thermal conductivities of cubic diamond,lonsdaleite,and nanotwinned diamond via machine-learned potential
20
作者 熊佳豪 戚梓俊 +6 位作者 梁康 孙祥 孙展鹏 汪启军 陈黎玮 吴改 沈威 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期594-601,共8页
Diamond is a wide-bandgap semiconductor with a variety of crystal configurations,and has the potential applications in the field of high-frequency,radiation-hardened,and high-power devices.There are several important ... Diamond is a wide-bandgap semiconductor with a variety of crystal configurations,and has the potential applications in the field of high-frequency,radiation-hardened,and high-power devices.There are several important polytypes of diamonds,such as cubic diamond,lonsdaleite,and nanotwinned diamond(NTD).The thermal conductivities of semiconductors in high-power devices at different temperatures should be calculated.However,there has been no reports about thermal conductivities of cubic diamond and its polytypes both efficiently and accurately based on molecular dynamics(MD).Here,using interatomic potential of neural networks can provide obvious advantages.For example,comparing with the use of density functional theory(DFT),the calculation time is reduced,while maintaining high accuracy in predicting the thermal conductivities of the above-mentioned three diamond polytypes.Based on the neuroevolution potential(NEP),the thermal conductivities of cubic diamond,lonsdaleite,and NTD at 300 K are respectively 2507.3 W·m^(-1)·K^(-1),1557.2 W·m^(-1)·K^(-1),and 985.6 W·m^(-1)·K^(-1),which are higher than the calculation results based on Tersoff-1989 potential(1508 W·m^(-1)·K^(-1),1178 W·m^(-1)·K^(-1),and 794 W·m^(-1)·K^(-1),respectively).The thermal conductivities of cubic diamond and lonsdaleite,obtained by using the NEP,are closer to the experimental data or DFT data than those from Tersoff-potential.The molecular dynamics simulations are performed by using NEP to calculate the phonon dispersions,in order to explain the possible reasons for discrepancies among the cubic diamond,lonsdaleite,and NTD.In this work,we propose a scheme to predict the thermal conductivity of cubic diamond,lonsdaleite,and NTD precisely and efficiently,and explain the differences in thermal conductivity among cubic diamond,lonsdaleite,and NTD. 展开更多
关键词 DIAMOND neuroevolution potential molecular dynamics thermal conductivity phonon transport
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部