Phosphorus is a limiting factor in agriculture due to restricted availability in soil and low utilization efficiency of crops.The identification of superior haplotypes of key genes responsible for low-phosphate(Pi)tol...Phosphorus is a limiting factor in agriculture due to restricted availability in soil and low utilization efficiency of crops.The identification of superior haplotypes of key genes responsible for low-phosphate(Pi)tolerance and their natural variation is important for molecular breeding.In this study,we conducted genome-wide association studies on low-phosphate tolerance coefficients using 152 maize inbred lines,and identified a significant association between SNPs on chromosome 7 and a low-phosphate tolerance coefficient.ZmGRF10 was identified as a candidate gene involved in adaptation of maize to Pi starvation.Expression of ZmGRF10 is induced by Pi starvation.A mutation in ZmGRF10 alleviated Pi starvation stress.RNA-seq analyses revealed significant upregulation of genes encoding various phosphatases in the zmgrf10-1 mutant,suggesting that ZmGRF10 negatively regulates expression of these genes,thereby affecting low-Pi tolerance by suppressing phosphorus remobilization.A superior haplotype with variations in the promoter region exhibited lower transcription activity of ZmGRF10.Our study unveiled a novel gene contributing to tolerance to low-Pi availability with potential to benefit molecular breeding for high Pi utilization.展开更多
Inorganic phosphorus(Pi)deficiency significantly impacts plant growth,development,and photosynthetic efficiency.This study evaluated 206 rice accessions from a MiniCore population under both Pi-sufficient(Pi^(+))and P...Inorganic phosphorus(Pi)deficiency significantly impacts plant growth,development,and photosynthetic efficiency.This study evaluated 206 rice accessions from a MiniCore population under both Pi-sufficient(Pi^(+))and Pi-starvation(Pi^(-))conditions in the field to assess photosynthetic phosphorus use efficiency(PPUE),defined as the ratio of A_(sat)^(Pi^(-))to A_(sat)^(Pi^(+)).A genome-wide association study and differential gene expression analyses identified an acid phosphatase gene(ACP2)that responds strongly to phosphate availability.Overexpression and knockout of ACP2 led to a 67%increase and 32%decrease in PPUE,respectively,compared with wild type.Introduction of an elite allele A,by substituting the v5 SNP G with A,resulted in an 18%increase in PPUE in gene-edited ACP2 rice lines.The phosphate-responsive gene PHR2 was found to transcriptionally activate ACP2 in parallel with PHR2 overexpression,resulting in an 11%increase in PPUE.Biochemical assays indicated that ACP2 primarily catalyzes the hydrolysis of phosphoethanolamine and phospho-L-serine.In addition,serine levels increased significantly in the ACP2^(vBG)overexpression line,along with a concomitant decrease in the expression of all nine genes involved in the photorespiratory pathway.Application of serine enhanced PPUE and reduced photorespiration rates in ACP2 mutants under Pi-starvation conditions.We deduce that ACP2 plays a crucial role in promoting photosynthesis adaptation to Pi starvation by regulating serine metabolism in rice.展开更多
Point placement of urea is an efficient technology to improve urea use efficiency in transplanted rice(Oryza sativa L.), but it is largely unknown how nutrient composition in the point placement and the distance from ...Point placement of urea is an efficient technology to improve urea use efficiency in transplanted rice(Oryza sativa L.), but it is largely unknown how nutrient composition in the point placement and the distance from placement site to the plant influence rice root distribution and growth, nutrient uptake, and rice grain yield. A controlled greenhouse experiment was conducted using both N-and P-deficient soil with point placement of N only or N and P together(N + P) at a distance close to or far from the plant,in comparison to an N-spilt application and a no-N control. Both nutrient composition and distance significantly affected rice root growth. Compared with the N point placement, the N + P point placement led to smaller root length and mass densities, higher specific root length(SRL) around the placement site, smaller root system, higher straw mass and grain yield, and higher N and P uptake. The difference between the N + P and N point placements was greater when close to the plant than when far from the plant. It is suggested that higher SRL around the placement site is essential for improving nutrient uptake and rice grain yield, and simultaneous point placement of N and P has a synergistic effect on rice growth.展开更多
基金funded by the National Key Research and Development Program of China (2022YFD1201700)the National Natural Science Foundation of China (32272130)the Jiangsu Collaborative Innovation Center for Modern Crop Production for their support。
文摘Phosphorus is a limiting factor in agriculture due to restricted availability in soil and low utilization efficiency of crops.The identification of superior haplotypes of key genes responsible for low-phosphate(Pi)tolerance and their natural variation is important for molecular breeding.In this study,we conducted genome-wide association studies on low-phosphate tolerance coefficients using 152 maize inbred lines,and identified a significant association between SNPs on chromosome 7 and a low-phosphate tolerance coefficient.ZmGRF10 was identified as a candidate gene involved in adaptation of maize to Pi starvation.Expression of ZmGRF10 is induced by Pi starvation.A mutation in ZmGRF10 alleviated Pi starvation stress.RNA-seq analyses revealed significant upregulation of genes encoding various phosphatases in the zmgrf10-1 mutant,suggesting that ZmGRF10 negatively regulates expression of these genes,thereby affecting low-Pi tolerance by suppressing phosphorus remobilization.A superior haplotype with variations in the promoter region exhibited lower transcription activity of ZmGRF10.Our study unveiled a novel gene contributing to tolerance to low-Pi availability with potential to benefit molecular breeding for high Pi utilization.
基金supported by the National Natural Science Foundation of China(3217024532260447)+5 种基金Natural Science Foundation of Zhejiang Province(LQ20C130003)Sanya Yazhou Bay Science and Technology City(SCKJ-JYRC-2022-04)Scientific Research Fund of Zhejiang Provincial Education Department(YZ0Z145972)Huzhou Public Welfare Application Research Project(2021GZ26)National Training Programs of Innovation and Entrepreneurship for Undergraduates(2022hzxy019)Guangzhou Science and Technology Planning Project(202201010790).
文摘Inorganic phosphorus(Pi)deficiency significantly impacts plant growth,development,and photosynthetic efficiency.This study evaluated 206 rice accessions from a MiniCore population under both Pi-sufficient(Pi^(+))and Pi-starvation(Pi^(-))conditions in the field to assess photosynthetic phosphorus use efficiency(PPUE),defined as the ratio of A_(sat)^(Pi^(-))to A_(sat)^(Pi^(+)).A genome-wide association study and differential gene expression analyses identified an acid phosphatase gene(ACP2)that responds strongly to phosphate availability.Overexpression and knockout of ACP2 led to a 67%increase and 32%decrease in PPUE,respectively,compared with wild type.Introduction of an elite allele A,by substituting the v5 SNP G with A,resulted in an 18%increase in PPUE in gene-edited ACP2 rice lines.The phosphate-responsive gene PHR2 was found to transcriptionally activate ACP2 in parallel with PHR2 overexpression,resulting in an 11%increase in PPUE.Biochemical assays indicated that ACP2 primarily catalyzes the hydrolysis of phosphoethanolamine and phospho-L-serine.In addition,serine levels increased significantly in the ACP2^(vBG)overexpression line,along with a concomitant decrease in the expression of all nine genes involved in the photorespiratory pathway.Application of serine enhanced PPUE and reduced photorespiration rates in ACP2 mutants under Pi-starvation conditions.We deduce that ACP2 plays a crucial role in promoting photosynthesis adaptation to Pi starvation by regulating serine metabolism in rice.
基金supported by the Major Sate Basic Research Development Program of China (No. 2013CB127401)the National Science Foundation of China (No. 41271309)the Postdoctoral Science Foundation of Jiangsu (No. 140064C)
文摘Point placement of urea is an efficient technology to improve urea use efficiency in transplanted rice(Oryza sativa L.), but it is largely unknown how nutrient composition in the point placement and the distance from placement site to the plant influence rice root distribution and growth, nutrient uptake, and rice grain yield. A controlled greenhouse experiment was conducted using both N-and P-deficient soil with point placement of N only or N and P together(N + P) at a distance close to or far from the plant,in comparison to an N-spilt application and a no-N control. Both nutrient composition and distance significantly affected rice root growth. Compared with the N point placement, the N + P point placement led to smaller root length and mass densities, higher specific root length(SRL) around the placement site, smaller root system, higher straw mass and grain yield, and higher N and P uptake. The difference between the N + P and N point placements was greater when close to the plant than when far from the plant. It is suggested that higher SRL around the placement site is essential for improving nutrient uptake and rice grain yield, and simultaneous point placement of N and P has a synergistic effect on rice growth.