Throughout evolution, plants have evolved sophisticated adaptive responses that allow them to grow with a limited supply of phos-phate, the preferential form in which the essential macronutrient phosphorus is absorbed...Throughout evolution, plants have evolved sophisticated adaptive responses that allow them to grow with a limited supply of phos-phate, the preferential form in which the essential macronutrient phosphorus is absorbed by plants. Most of these responses are aimed to increase phosphate availability and acquisition through the roots, to optimize its usage in metabolic processes, and to protect plants from the deleterious effects of phosphate deficiency stress. Regulation of these adaptive responses requires fine percep- tion of the external and internal phosphate levels, and a complex signal transduction pathway that integrates information on the phosphate status at the whole-plant scale. The molecular mecha-nisms that participate in phosphate homeostasis include transcriptional control of gene expression, RNA silencing mediated by microRNAs, regulatory non-coding RNAs of miRNA activity, phosphate transporter trafficking, and post-translational modification of proteins, such as phosphorylation, sumoylation and ubiquitination. Such a varied regulatory repertoire reflects the complexity intrinsic to phosphate surveying and signaling pathways. Here, we describe these regulatory mechanisms, emphasizing the increasing importance of ubiquitination in the control of phosphate starvation responses.展开更多
In plants, phosphate (Pi) homeostasis is regulated by the interaction of PHR transcription factors with stand-alone SPX proteins, which act as sensors for inositol pyrophosphates. Here, we combined different methods t...In plants, phosphate (Pi) homeostasis is regulated by the interaction of PHR transcription factors with stand-alone SPX proteins, which act as sensors for inositol pyrophosphates. Here, we combined different methods to obtain a comprehensive picture of how inositol (pyro)phosphate metabolism is regulated by Pi and dependent on the inositol phosphate kinase ITPK1. We found that inositol pyrophosphates are more responsive to Pi than lower inositol phosphates, a response conserved across kingdoms. With CE-ESI-MS we could separate different InsP7 isomers in Arabidopsis and rice, and identify 4/6-InsP7 and a PP-InsP4 isomer hitherto not reported in plants. We found that the inositol pyrophosphates 1/3-InsP7, 5-InsP7 and InsP8 increase severalfold in shoots after Pi resupply and that tissue-specific accumulation of inositol pyrophosphates relies on ITPK1 activities and MRP5-dependent InsP6 compartmentalization. Notably, ITPK1 is critical for Pi-dependent 5-InsP7 and InsP8 synthesis in planta and its activity regulates Pi starvation responses in a PHR-dependent manner. Furthermore, we demonstrate that ITPK1-mediated conversion of InsP6 to 5-InsP7 requires high ATP concentrations and that Arabidopsis ITPK1 has an ADP phosphotransferase activity to dephosphorylate specifically 5-InsP7 under low ATP. Collectively, our study provides deeper insights into Pi-dependent changes in nutritional and energetic states with the synthesis of regulatory inositol pyrophosphates.展开更多
基金supported by the Spanish Ministry of Economy and Competitiveness(MINECO)through different funding programs:the CONSOLIDER Program,Grant2007-28317S.P.and J.P.-A.,the INNPACTO Program,Grant IPT-310000-2010-9+7 种基金J.P.-A.,the PLANT-KBBE Program,Grant EUI2008-03742the"Fossi"projectV.R.,EUI2008-03748the"Transnet"projectJ.P.-A.and the National Research Program,Grants BIO2011-29085J.P.-A.,BIO2008-04160,BIO2011-30546S.P.,and BIO2010-18820V.R.).M.R.-T.received a Jae-Predoc fellow-ship from CSIC
文摘Throughout evolution, plants have evolved sophisticated adaptive responses that allow them to grow with a limited supply of phos-phate, the preferential form in which the essential macronutrient phosphorus is absorbed by plants. Most of these responses are aimed to increase phosphate availability and acquisition through the roots, to optimize its usage in metabolic processes, and to protect plants from the deleterious effects of phosphate deficiency stress. Regulation of these adaptive responses requires fine percep- tion of the external and internal phosphate levels, and a complex signal transduction pathway that integrates information on the phosphate status at the whole-plant scale. The molecular mecha-nisms that participate in phosphate homeostasis include transcriptional control of gene expression, RNA silencing mediated by microRNAs, regulatory non-coding RNAs of miRNA activity, phosphate transporter trafficking, and post-translational modification of proteins, such as phosphorylation, sumoylation and ubiquitination. Such a varied regulatory repertoire reflects the complexity intrinsic to phosphate surveying and signaling pathways. Here, we describe these regulatory mechanisms, emphasizing the increasing importance of ubiquitination in the control of phosphate starvation responses.
基金This work was funded by grants from the Deutsche Forschungsgemein-schaft(HE 8362/1-1,DFG Eigene Stelle,to R.F.H.G.SCHA 1274/4-1,SCHA 1274/5-1,Research Training Group GRK 2064 and Germany's Excellence Strategy,EXC-2070-390732324,PhenoRob to G.S.+1 种基金JE 572/4-1 and Germany's Excellence Strategy,ClBSS-EXC-2189-Project ID 390939984 to H.J.JLA 4541/1-1 postdoctoral research fellowship to D.L.),grants from the Medical Research Council(MRC award MR/T028904/1 to A.S.),and a DBT-IISc Program to D.L.
文摘In plants, phosphate (Pi) homeostasis is regulated by the interaction of PHR transcription factors with stand-alone SPX proteins, which act as sensors for inositol pyrophosphates. Here, we combined different methods to obtain a comprehensive picture of how inositol (pyro)phosphate metabolism is regulated by Pi and dependent on the inositol phosphate kinase ITPK1. We found that inositol pyrophosphates are more responsive to Pi than lower inositol phosphates, a response conserved across kingdoms. With CE-ESI-MS we could separate different InsP7 isomers in Arabidopsis and rice, and identify 4/6-InsP7 and a PP-InsP4 isomer hitherto not reported in plants. We found that the inositol pyrophosphates 1/3-InsP7, 5-InsP7 and InsP8 increase severalfold in shoots after Pi resupply and that tissue-specific accumulation of inositol pyrophosphates relies on ITPK1 activities and MRP5-dependent InsP6 compartmentalization. Notably, ITPK1 is critical for Pi-dependent 5-InsP7 and InsP8 synthesis in planta and its activity regulates Pi starvation responses in a PHR-dependent manner. Furthermore, we demonstrate that ITPK1-mediated conversion of InsP6 to 5-InsP7 requires high ATP concentrations and that Arabidopsis ITPK1 has an ADP phosphotransferase activity to dephosphorylate specifically 5-InsP7 under low ATP. Collectively, our study provides deeper insights into Pi-dependent changes in nutritional and energetic states with the synthesis of regulatory inositol pyrophosphates.