N31-type phosphate laser glasses doped with different concentrations of Cu were prepared. Their optical loss coefficient at 1053 nm wavelength and nonradiative transition rate from the Nd3+ 4F3/2 state were determine...N31-type phosphate laser glasses doped with different concentrations of Cu were prepared. Their optical loss coefficient at 1053 nm wavelength and nonradiative transition rate from the Nd3+ 4F3/2 state were determined and analyzed in detail. The optical loss coefficient per unit of Cu2+ (cm–1/ppmw) and the fluorescence decay rate (Hz/ppmw) caused by Cu2+ and Nd3+ interaction were 0.0024 and 7.9, respectively. Cu impurity affected both optical loss at 1053 nm and fluorescent emission of Nd3+ 4F3/2 state seriously in N31 laser glass.展开更多
Using methyl triethoxysilicane as precursor, a moisture-resistant coating for neodymium-doped laser glass was developed by the sol-gel process. Colloidal silica was added in coating solution as modifier. The refractiv...Using methyl triethoxysilicane as precursor, a moisture-resistant coating for neodymium-doped laser glass was developed by the sol-gel process. Colloidal silica was added in coating solution as modifier. The refractive index of this coating varied from 1.31 to 1.42. A porous antireflective (AR) silica coating with the index of 1.27 was coated on the moisture-resistant coating surface. The two-layer coating possessed transmission up to 99.1% at wavelength of 966 nm, surface root-mean-square (RMS) roughaess of 1.245 am, and roughness of average (RA) of 0.961 am. In the case of laser of 1053-nm laser waveleilgth and 1-ns pulse duration, the damage threshold of the two-layer coatings was more than 15 J/cm^2.展开更多
The integrated absorption cross section Σ abs, peak emis sion cross section σ emi, Judd-Ofeld intensity parameters Ω t(t=2,4,6), and spontaneous emission probability A R of Er 3+ ions were determined fo r...The integrated absorption cross section Σ abs, peak emis sion cross section σ emi, Judd-Ofeld intensity parameters Ω t(t=2,4,6), and spontaneous emission probability A R of Er 3+ ions were determined fo r Erbium doped alkali and alkaline earth phosphate glasses. It is found the comp ositional dependence of σ emi is almost similar to that of Σ abs, wh ich is determined by the sum of Ω t (3Ω 2+10Ω 4+21Ω 6). In addition, the compositional dependence of Ω t was studied in these glass systems. As a resu lt, compared with Ω 4 and Ω 6, the Ω 2 has a stronger compositional depend ence on the ionic radius and content of modifiers. The covalency of Er-O bonds in phosphate glass is weaker than that in silicate glass, germanate glass, alumi nate glass, and tellurate glass, since Ω 6 of phosphate glass is relatively la rge. A R is affected by the covalency of the Er 3+ ion sites and correspon ds to the Ω 6 value.展开更多
Because of the influence of OH groups in phosphate glasses on the radiation of rare-earth ions, the laser performance is degraded. The laser efficiency and the small signal gain experiment of several phosphate glass s...Because of the influence of OH groups in phosphate glasses on the radiation of rare-earth ions, the laser performance is degraded. The laser efficiency and the small signal gain experiment of several phosphate glass samples have been done, the concentration of OH groups in glasses was calculated from the measured absorption coefficient at 3.47 μm. It is shown that the concentration of OH groups in phosphate glasses can seriously influence the laser output characteristics, and the OH groups have worse influence on the laser amplifier than laser oscillator.展开更多
This paper investigates the monolithic edge-cladding process for the elliptical disk of N31-type Nd-doped phosphate laser glass,which will be utilized under liquid cooling conditions for high-power laser systems.The t...This paper investigates the monolithic edge-cladding process for the elliptical disk of N31-type Nd-doped phosphate laser glass,which will be utilized under liquid cooling conditions for high-power laser systems.The thermal stress,interface bubbles and residual refiectivity,which are due to high-temperature casting and bonding during the monolithic edge-cladding process,are simulated and determined.The applied mould is optimized to a rectangular cavity mould,and the casting temperature is optimized to 1000℃.The resulting lower bubble density makes the mean residual refiectivity as low as 6.75×10^(-5),which is enough to suppress the amplified spontaneous emission generated in the Nd-glass disk,and the resulting maximum optical retardation is converged to 10.2–13.3 nm/cm,which is a favourable base for fine annealing to achieve the stress specification of less than or equal to 5 nm/cm.After fine annealing at the optimized 520℃,the maximum optical retardation is as low as 4.8 nm/cm,and the minimum transmitted wavefront peak-to-valley value is 0.222 wavelength(632.8 nm).An N31 elliptical disk with the size of 194 mm×102 mm×40 mm can be successfully cladded by the optimized monolithic edge-cladding process,whose edge-cladded disk with the size of 200 mm×108 mm×40 mm can achieve laser gain one-third higher than that of an N21-type disk of the same size.展开更多
文摘N31-type phosphate laser glasses doped with different concentrations of Cu were prepared. Their optical loss coefficient at 1053 nm wavelength and nonradiative transition rate from the Nd3+ 4F3/2 state were determined and analyzed in detail. The optical loss coefficient per unit of Cu2+ (cm–1/ppmw) and the fluorescence decay rate (Hz/ppmw) caused by Cu2+ and Nd3+ interaction were 0.0024 and 7.9, respectively. Cu impurity affected both optical loss at 1053 nm and fluorescent emission of Nd3+ 4F3/2 state seriously in N31 laser glass.
基金This work was supported by the National "863" Project of China (No. 863-804-2).
文摘Using methyl triethoxysilicane as precursor, a moisture-resistant coating for neodymium-doped laser glass was developed by the sol-gel process. Colloidal silica was added in coating solution as modifier. The refractive index of this coating varied from 1.31 to 1.42. A porous antireflective (AR) silica coating with the index of 1.27 was coated on the moisture-resistant coating surface. The two-layer coating possessed transmission up to 99.1% at wavelength of 966 nm, surface root-mean-square (RMS) roughaess of 1.245 am, and roughness of average (RA) of 0.961 am. In the case of laser of 1053-nm laser waveleilgth and 1-ns pulse duration, the damage threshold of the two-layer coatings was more than 15 J/cm^2.
基金Funded by the Natural Science Foundation of Guangdong Prov ince(013013) and the Science and Technology Plan of Guangdong Province(2002B11604)
文摘The integrated absorption cross section Σ abs, peak emis sion cross section σ emi, Judd-Ofeld intensity parameters Ω t(t=2,4,6), and spontaneous emission probability A R of Er 3+ ions were determined fo r Erbium doped alkali and alkaline earth phosphate glasses. It is found the comp ositional dependence of σ emi is almost similar to that of Σ abs, wh ich is determined by the sum of Ω t (3Ω 2+10Ω 4+21Ω 6). In addition, the compositional dependence of Ω t was studied in these glass systems. As a resu lt, compared with Ω 4 and Ω 6, the Ω 2 has a stronger compositional depend ence on the ionic radius and content of modifiers. The covalency of Er-O bonds in phosphate glass is weaker than that in silicate glass, germanate glass, alumi nate glass, and tellurate glass, since Ω 6 of phosphate glass is relatively la rge. A R is affected by the covalency of the Er 3+ ion sites and correspon ds to the Ω 6 value.
文摘Because of the influence of OH groups in phosphate glasses on the radiation of rare-earth ions, the laser performance is degraded. The laser efficiency and the small signal gain experiment of several phosphate glass samples have been done, the concentration of OH groups in glasses was calculated from the measured absorption coefficient at 3.47 μm. It is shown that the concentration of OH groups in phosphate glasses can seriously influence the laser output characteristics, and the OH groups have worse influence on the laser amplifier than laser oscillator.
基金the Nd-glass project from National Major Science and Technology Project of China(No.G-GFZX0205010202.1)the Shanghai International Science&Technology Cooperation Program(No.18590712900)。
文摘This paper investigates the monolithic edge-cladding process for the elliptical disk of N31-type Nd-doped phosphate laser glass,which will be utilized under liquid cooling conditions for high-power laser systems.The thermal stress,interface bubbles and residual refiectivity,which are due to high-temperature casting and bonding during the monolithic edge-cladding process,are simulated and determined.The applied mould is optimized to a rectangular cavity mould,and the casting temperature is optimized to 1000℃.The resulting lower bubble density makes the mean residual refiectivity as low as 6.75×10^(-5),which is enough to suppress the amplified spontaneous emission generated in the Nd-glass disk,and the resulting maximum optical retardation is converged to 10.2–13.3 nm/cm,which is a favourable base for fine annealing to achieve the stress specification of less than or equal to 5 nm/cm.After fine annealing at the optimized 520℃,the maximum optical retardation is as low as 4.8 nm/cm,and the minimum transmitted wavefront peak-to-valley value is 0.222 wavelength(632.8 nm).An N31 elliptical disk with the size of 194 mm×102 mm×40 mm can be successfully cladded by the optimized monolithic edge-cladding process,whose edge-cladded disk with the size of 200 mm×108 mm×40 mm can achieve laser gain one-third higher than that of an N21-type disk of the same size.