期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Differential roles of C-3 and C-6 phosphate monoesters in affecting potato starch properties
1
作者 Li Ding Andreas Blennow Yuyue Zhong 《Grain & Oil Science and Technology》 CAS 2024年第2期79-86,共8页
The effects of starch phosphate monoester content(SPC),namely C-3(C3P)and C-6 phosphate monoesters(C6P),on the starch properties were investigated using four potato starches with varied SPC/C3P/C6P and two nonphosphor... The effects of starch phosphate monoester content(SPC),namely C-3(C3P)and C-6 phosphate monoesters(C6P),on the starch properties were investigated using four potato starches with varied SPC/C3P/C6P and two nonphosphorylated maize starches with a similar range of amylose content(AC)as controls.The starch property results showed that a higher SPC is associated with lower turbidity,storage and loss modulus after storage,and water solubility,but higher swelling power(SP)and pasting viscosities.These findings suggested that SPC inhibited molecular rearrangement during storage and starch leaching during heating,and enhanced swelling and viscosities due to increased hydration and water uptake caused by the repulsion effect of phosphate groups and a less ordered crystalline structure.Increased SPC also resulted in lower resistant starch(RS)content in a native granular state but higher RS after retrogradation.Pearson correlations further indicated that SPC/C3P/C6P were positively correlated with peak(r^(2)=0.925,0.873 and 0.930,respectively),trough(r^(2)=0.994,0.968 and 0.988,respectively),and final viscosities(r^(2)=0.981,0.968 and 0.971,respectively).Notably,SPC,mainly C3P,exhibited a significantly positive correlation with SP(r^(2)=0.859)and setback viscosity(r^(2)=0.867),whereas SPC,mainly C6P,showed a weak positive correlation with RS after retrogradation(r^(2)=0.746).However,SPC had no significant correlations with water solubility,turbidity and rheology properties,which were more correlated with AC.These findings are helpful for the food industry to select potato starches with desired properties based on their contents of SPC,C3P,or C6P. 展开更多
关键词 starch phosphate monoesters C-3 phosphate monoesters C-6 phosphate monoesters Physicochemical properties In vitro digestibility
下载PDF
Transformation of Sucrose to Starch and Protein in Rice Leaves and Grains under Two Establishment Methods 被引量:4
2
作者 Manisha KUMARI Bavita ASTHIR 《Rice science》 SCIE CSCD 2016年第5期255-265,共11页
Six rice varieties, PR120, PR116, Feng Ai Zan, PR115, PAU201 and Punjab Mehak 1 were raised under aerobic and transplanting conditions to assess the effects of planting conditions on sucrose metabolising enzymes in re... Six rice varieties, PR120, PR116, Feng Ai Zan, PR115, PAU201 and Punjab Mehak 1 were raised under aerobic and transplanting conditions to assess the effects of planting conditions on sucrose metabolising enzymes in relation to the transformation of free sugars to starch and protein in flag leaves and grains. Activities of sucrose synthase, sucrose phosphate synthase and acid invertase increased till flowering stage in leaves and mid-milky stage(14 d after flowering) in grains and thereafter declined in concomitant with the contents of reducing sugar. Under aerobic conditions, the activities of acid invertase and sucrose synthase(cleavage) significantly decreased in conjunction with the decrease in non-reducing sugars and starch content in all the varieties. Disruption of starch biosynthesis under the influence of aerobic conditions in both leaves and grains and the higher build up of sugars possibly resulted in their favoured utilization in nitrogen metabolism. Feng Ai Zan, PR115 and PR120 maintained higher levels of sucrose synthase enzymes in grains and leaves and contents of metabolites(amino acid, protein and non-reducing sugar) under aerobic conditions, while PR116, Punjab Mehak 1 and PAU201 performed better under transplanting conditions, thus showing their adaptation to environmental stress. Yield gap between aerobic and transplanting rice is attributed primarily to the difference in sink activity and strength. Overall, it appear that up-regulation of sucrose synthase(synthesis) and sucrose phosphate synthase under aerobic conditions might be responsible in enhancing growth and productivity of rice varieties. 展开更多
关键词 aerobic rice acid invertase protein amino acid starch sucrose synthase sucrose phosphate synthase water soluble carbohydrate sugar
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部