A simulated moving bed (SMB), equipped with eight silica-gel columns, was used to separate phosphatidylcholine (PC) from soybean phospholipids. The effects of flow rate in Sections 2 (Q2) and 3 (Q3), switching time, f...A simulated moving bed (SMB), equipped with eight silica-gel columns, was used to separate phosphatidylcholine (PC) from soybean phospholipids. The effects of flow rate in Sections 2 (Q2) and 3 (Q3), switching time, feed flow rate and feed concentration on the operating performance parameters: purity, recovery, productivity and desorbent consumption were studied. Operating conditions leading to more than 90% purity in both outlet streams have been identified, together with those achieving optimal performance. Regions leading to complete separation are observed and explained theoretically. As the mass-transfer effect was not considered, the triangle theory only gives initial guesses for the optimal operating conditions.展开更多
基金Project (No. 20040335045) supported by the Specialized ResearchFund for the Doctoral Program of Higher Education of China
文摘A simulated moving bed (SMB), equipped with eight silica-gel columns, was used to separate phosphatidylcholine (PC) from soybean phospholipids. The effects of flow rate in Sections 2 (Q2) and 3 (Q3), switching time, feed flow rate and feed concentration on the operating performance parameters: purity, recovery, productivity and desorbent consumption were studied. Operating conditions leading to more than 90% purity in both outlet streams have been identified, together with those achieving optimal performance. Regions leading to complete separation are observed and explained theoretically. As the mass-transfer effect was not considered, the triangle theory only gives initial guesses for the optimal operating conditions.