期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Roles of phosphatidylinositol-3-kinases signaling pathway in inflammation-related cancer:Impact of rs10889677 variant and buparlisib in colitis-associated cancer 被引量:1
1
作者 Nurul Nadirah Razali Raja Affendi Raja Ali +3 位作者 Khairul Najmi Muhammad Nawawi Azyani Yahaya Norshafila Diana Mohd Rathi Norfilza Mohd Mokhtar 《World Journal of Gastroenterology》 SCIE CAS 2023年第40期5543-5556,共14页
BACKGROUND Phosphatidylinositol-3-kinases(PI3K)is a well-known route in inflammationrelated cancer.Recent discovery on PI3K-related genes revealed a potential variant that links ulcerative colitis(UC)and colorectal ca... BACKGROUND Phosphatidylinositol-3-kinases(PI3K)is a well-known route in inflammationrelated cancer.Recent discovery on PI3K-related genes revealed a potential variant that links ulcerative colitis(UC)and colorectal cancer(CRC)with colitisassociated cancer(CAC).PI3K/AKT pathway has been recommended as a potential additional therapeutic option for CRC due to its substantial role in modifying cellular processes.Buparlisib is a pan-class I PI3K inhibitor previously shown to reduce tumor growth.AIM To investigate the regulation of rs10889677 and the role of buparlisib in the PI3K signaling pathway in CAC pathogenesis.METHODS Genomic DNA from 32 colonic samples,including CAC(n=7),UC(n=10)and CRC(n=15),was sequenced for the rs10889677 mutation.The mutant and wildtype fragments were amplified and cloned in the pmirGLO vector.The luciferase activity of cloned vectors was assessed after transfection into the HT29 cell line.CAC mice were induced by a mixture of a single azoxymethane injection and three cycles of dextran sulphate sodium,then buparlisib was administered after 14 d.The excised colon was subjected to immunohistochemistry for Ki67 and Cleaved-caspase-3 markers and quantitative real-time polymerase chain reaction analysis for Pdk1 and Sgk2.RESULTS Luciferase activity decreased by 2.07-fold in the rs10889677 mutant,confirming the hypothesis that the variant disrupted miRNA binding sites,which led to an increase in IL23R expression and the activation of the PI3K signaling pathway.Furthermore,CAC-induced mice had a significantly higher disease activity index(P<0.05).Buparlisib treatment significantly decreased mean weight loss in CAC-induced mice(P<0.05),reduced the percentage of proliferating cells by 5%,and increased the number of apoptotic cells.The treatment also caused a downward trend of Pdk1 expression and significantly decreased Sgk2 expression.CONCLUSION Our findings suggested that the rs10889677 variant as a critical initiator of the PI3K signaling pathway,and buparlisib had the ability to prevent PI3K-non-AKT activation in the pathophysiology of CAC. 展开更多
关键词 Colitis-associated cancer Colorectal cancer phosphatidylinositol 3-kinase Animal model LUCIFERASES RENILLA phosphatidylinositol 3-kinase inhibitor
下载PDF
Mechanism of stilbene glycosides on apoptosis of SH-SY5Y cells via regulating PI3K/AKT signaling pathway
2
作者 KANG Bi-qian LI Yue +8 位作者 HE Xiao-xuan XIAO Zhen HU Rui LUO Chen-liang QIAO Ming-yu WU Gui-you LI Zhen-zhong ZHU Xiao-ying HUANG Zhong-shi 《Journal of Hainan Medical University》 CAS 2024年第1期8-14,共7页
Objective:To investigate the effects of stilbene glycoside(TSG)on okadaic acid-induced apoptosis in human neuroblastoma cells(SH-SY5Y)via the PI3K/AKT pathway.Methods:The optimal concentration of OA was screened by CC... Objective:To investigate the effects of stilbene glycoside(TSG)on okadaic acid-induced apoptosis in human neuroblastoma cells(SH-SY5Y)via the PI3K/AKT pathway.Methods:The optimal concentration of OA was screened by CCK-8 assay,and SH-SY5Y cells were divided into control group,model group,TSG group,LY294002 group and LY294002+TSG group.The proliferation and apoptosis in each group were detected by CCK-8 and TUNEL assays;Western blotting method and real-time fluorescence quantitative polymerase chain reaction was used to detect the expression of PI3K,P-PI3K(Y607),AKT,P-AKT(Ser473),Bcl-2 and Bax proteins.The relative protein expression was represented by P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax gray ratio.Results:CCK-8 screened the optimal concentration of OA as 40 nmol/L.Compared with the control group,the model group increased relative cell viability,decreased apoptosis rate,the pathway and apoptotic proteins expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax were decreased,and the mRNA expression levels of PI3K,AKT and Bcl-2 were decreased.Bax mRNA expression level increased(P<0.05);Compared with model group,TSG group increased relative cell viability,decreased apoptosis rate,increased protein expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT,Bcl-2/Bax,and increased mRNA expression levels of PI3K,AKT,and Bcl-2.Bax mRNA expression decreased(P<0.05),LY294002 group decreased relative cell viability,increased apoptosis rate,P-PI3K(Y607)/PI3K protein expression levels were significantly decreased(P<0.05),P-AKT(Ser473)/AKT and Bcl-2/Bax protein expression levels were significantly decreased,but there was no statistical significance,PI3K,AKT and Bcl-2 mRNA expression levels were decreased,and Bax mRNA expression levels were increased(all P<0.05);Compared with LY294002 group,LY294002+TSG group increased relative cell viability,decreased apoptosis rate,and the protein expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax were increased.The mRNA expression levels of PI3K,AKT,Bcl-2 were increased,Bax was decreased(all P<0.05).Conclusion:Stilbene glycoside may alleviate okadaic acid-induced apoptosis in SH-SY5Y cells by interfering with the PI3K/AKT signaling pathway,which in turn regulates the expression of apoptotic factors such as Bcl-2 and Bax. 展开更多
关键词 2 3 5 4'-tetrahydroxystilbene 2-O-glucopyranoside Alzheimer disease LY294002 phosphatidylinositol 3-kinase(pi3k)/protein kinase B(AkT) Cell proliferation APOPTOSIS
下载PDF
SERPINH1 promoted the proliferation and metastasis of colorectal cancer by activating PI3K/Akt/mTOR signaling pathway
3
作者 Xiao-Sheng Jin Lu-Xi Chen +1 位作者 Ting-Ting Ji Rong-Zhou Li 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第5期1890-1907,共18页
BACKGROUND Serpin peptidase inhibitor clade H member 1(SERPINH1)was initially recognized as an oncogene implicated in various human malignancies.Nevertheless,the clinical relevance and functional implications of SERPI... BACKGROUND Serpin peptidase inhibitor clade H member 1(SERPINH1)was initially recognized as an oncogene implicated in various human malignancies.Nevertheless,the clinical relevance and functional implications of SERPINH1 in colorectal cancer(CRC)remain largely elusive.AIM To investigate the effects of SERPINH1 on CRC cells and its specific mechanism.METHODS Quantitative real-time polymerase chain reaction,western blotting analysis,The Cancer Genome Atlas data mining and immunohistochemistry were employed to examine SERPINH1 expression in CRC cell lines and tissues.A series of in-vitro assays were performed to demonstrate the function of SERPINH1 and its possible mechanisms in CRC.RESULTS SERPINH1 demonstrated elevated expression levels in both CRC cells and tissues,manifested at both mRNA and protein tiers.Elevated SERPINH1 levels correlated closely with advanced T stage,lymph node involvement,and distant metastasis,exhibiting a significant association with poorer overall survival among CRC patients.Subsequent investigations unveiled that SERPINH1 overexpression notably bolstered CRC cell proliferation,invasion,and migration in vitro,while conversely,SERPINH1 knockdown elicited the opposite effects.Gene set enrichment analysis underscored a correlation between SERPINH1 upregulation and genes associated with cell cycle regulation.Our findings underscored the capacity of heightened SERPINH1 levels to expedite G1/S phase cell cycle progression via phosphatidylinositol 3-kinase/AKT/mechanistic target of rapamycin pathway activation,thereby facilitating CRC cell invasion and migration.CONCLUSION These findings imply a crucial involvement of SERPINH1 in the advancement and escalation of CRC,potentially positioning it as a novel candidate for prognostic assessment and therapeutic intervention in CRC management. 展开更多
关键词 Serpin peptidase inhibitor clade H member 1 Colorectal cancer PROLIFERATION Cell cycle phosphatidylinositol 3-kinase/AkT/mechanistic target of rapamycin
下载PDF
Novel PIKfyve/Tubulin Dual-target Inhibitor as a Promising Therapeutic Strategy for B-cell Acute Lymphoblastic Leukemia
4
作者 Zhen LU Qian LAI +8 位作者 Zhi-feng LI Meng-ya ZHONG Yue-long JIANG Li-ying FENG Jie ZHA Jing-wei YAO Yin LI Xian-ming DENG Bing XU 《Current Medical Science》 SCIE CAS 2024年第2期298-308,共11页
Objective:In B-cell acute lymphoblastic leukemia(B-ALL),current intensive chemotherapies for adult patients fail to achieve durable responses in more than 50%of cases,underscoring the urgent need for new therapeutic r... Objective:In B-cell acute lymphoblastic leukemia(B-ALL),current intensive chemotherapies for adult patients fail to achieve durable responses in more than 50%of cases,underscoring the urgent need for new therapeutic regimens for this patient population.The present study aimed to determine whether HZX-02-059,a novel dual-target inhibitor targeting both phosphatidylinositol-3-phosphate 5-kinase(PIKfyve)and tubulin,is lethal to B-ALL cells and is a potential therapeutic for B-ALL patients.Methods:Cell proliferation,vacuolization,apoptosis,cell cycle,and in-vivo tumor growth were evaluated.In addition,Genome-wide RNA-sequencing studies were conducted to elucidate the mechanisms of action underlying the anti-leukemia activity of HZX-02-059 in B-ALL.Results:HZX-02-059 was found to inhibit cell proliferation,induce vacuolization,promote apoptosis,block the cell cycle,and reduce in-vivo tumor growth.Downregulation of the p53 pathway and suppression of the phosphoinositide 3-kinase(PI3K)/AKT pathway and the downstream transcription factors c-Myc and NF-κB were responsible for these observations.Conclusion:Overall,these findings suggest that HZX-02-059 is a promising agent for the treatment of B-ALL patients resistant to conventional therapies. 展开更多
关键词 B-cell acute lymphoblastic leukemia dual-target inhibitor NF-kB c-Myc pi3k/AkT p53
下载PDF
Promoting axon regeneration in the central nervous system by increasing PI3-kinase signaling 被引量:1
5
作者 Bart Nieuwenhuis Richard Eva 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第6期1172-1182,共11页
Much research has focused on the PI3-kinase and PTEN signaling pathway with the aim to stimulate repair of the injured central nervous system.Axons in the central nervous system fail to regenerate,meaning that injurie... Much research has focused on the PI3-kinase and PTEN signaling pathway with the aim to stimulate repair of the injured central nervous system.Axons in the central nervous system fail to regenerate,meaning that injuries or diseases that cause loss of axonal connectivity have life-changing consequences.In 2008,genetic deletion of PTEN was identified as a means of stimulating robust regeneration in the optic nerve.PTEN is a phosphatase that opposes the actions of PI3-kinase,a family of enzymes that function to generate the membrane phospholipid PIP_(3) from PIP_(2)(phosphatidylinositol(3,4,5)-trisphosphate from phosphatidylinositol(4,5)-bisphosphate).Deletion of PTEN therefore allows elevated signaling downstream of PI3-kinase,and was initially demonstrated to promote axon regeneration by signaling through mTOR.More recently,additional mechanisms have been identified that contribute to the neuron-intrinsic control of regenerative ability.This review describes neuronal signaling pathways downstream of PI3-kinase and PIP3,and considers them in relation to both developmental and regenerative axon growth.We briefly discuss the key neuron-intrinsic mechanisms that govern regenerative ability,and describe how these are affected by signaling through PI3-kinase.We highlight the recent finding of a developmental decline in the generation of PIP_(3) as a key reason for regenerative failure,and summarize the studies that target an increase in signaling downstream of PI3-kinase to facilitate regeneration in the adult central nervous system.Finally,we discuss obstacles that remain to be overcome in order to generate a robust strategy for repairing the injured central nervous system through manipulation of PI3-kinase signaling. 展开更多
关键词 axon cytoskeleton axon regeneration axon transport cell signaling central nervous system growth cone NEUROPROTECTION pi3-kinase pi3k PTEN TRAFFICkING TRANSCRIPTION translation
下载PDF
Synergistic suppression of the PI3K inhibitor CAL-101 with bortezomib on mantle cell lymphoma growth 被引量:1
6
作者 Fu-Lian Qu Bing Xia +6 位作者 Su-Xia Li Chen Tian Hong-Liang Yang Qian Li Ya-Fei Wang Yong Yu Yi-Zhuo Zhang 《Cancer Biology & Medicine》 SCIE CAS CSCD 2015年第4期401-408,共8页
Objective: To investigate the effects of CAL-101, particularly when combined with bortezomib(BTZ) on mantle cell lymphoma(MCL) cells, and to explore its relative mechanisms.Methods: MTT assay was applied to detect the... Objective: To investigate the effects of CAL-101, particularly when combined with bortezomib(BTZ) on mantle cell lymphoma(MCL) cells, and to explore its relative mechanisms.Methods: MTT assay was applied to detect the inhibitory effects of different concentrations of CAL-101. MCL cells were divided into four groups: control group, CAL-101 group, BTZ group, and CAL-101/BTZ group. The expression of PI3K-p110σ, AKT, ERK, p-AKT and p-ERK were detected by Western blot. The apoptosis rates of CAL-101 group, BTZ group, and combination group were detected by flow cytometry. The location changes of nuclear factor kappa-B(NF-κB) of 4 groups was investigated by NF-κB Kit exploring. Western blot was applied to detect the levels of caspase-3 and the phosphorylation of AKT in different groups. Results: CAL-101 dose- and time-dependently induced reduction in MCL cell viability. CAL-101 combined with BTZ enhanced the reduction in cell viability and apoptosis. Western blot analysis showed that CAL-101 significantly blocked the PI3K/AKT and ERK signaling pathway in MCL cells. The combination therapy contributed to the inactivation of NF-κB and AKT in MCL cell lines. However, cleaved caspase-3 was up-regulated after combined treatment. Conclusion: Our study showed that PI3K/p110σ is a novel therapeutic target in MCL, and the underlying mechanism could be the blocking of the PI3K/AKT and ERK signaling pathways. These findings provided a basis for clinical evaluation of CAL-101 and a rationale for its application in combination therapy, particularly with BTZ. 展开更多
关键词 CAL-101 bortezomib(BTZ) phosphatidylinositol-3-kinasepi3k mantle cell lymphoma(MCL)
下载PDF
Clinical review considerations of class I PI3K inhibitors in hematolymphatic malignancies by Center for Drug Evaluation
7
作者 Limin Zou Yueli Qi +5 位作者 Ling Tang Yu Du Meiyi Xiang Xiaoming Chen Jun Ma Zhimin Yang 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2022年第4期415-421,共7页
Several phosphoinositide 3-kinase(PI3 K) inhibitors are currently approved to treat hematolymphatic malignant diseases worldwide, and many drugs that have the same target are in the clinical research stage. In March 2... Several phosphoinositide 3-kinase(PI3 K) inhibitors are currently approved to treat hematolymphatic malignant diseases worldwide, and many drugs that have the same target are in the clinical research stage. In March 2022,duvelisib became the first PI3 K inhibitor approved in China indicated for the treatment of hematolymphatic malignant diseases. Meanwhile, linperlisib and copanlisib have almost completed the technical review of the clinical specialty. The Center for Drug Evaluation(CDE) of the China National Medical Products Administration(NMPA) found that class I PI3 K inhibitors can cause various degrees of immune-related adverse events, which are associated with action mechanisms, affecting the benefit-risk assessment of the drugs. On April 21, 2021, the United States Food and Drug Administration(FDA) convened the Oncologic Drugs Advisory Committee(ODAC)meeting to discuss the safety of PI3 K inhibitors indicated for hematolymphatic malignancies and their related risk of death. The hematological tumor group of CDE of the China NMPA summarized and combined the data on PI3 K inhibitors listed or under technical review for marketing authorization applications and found that such products may have unique efficacy and safety characteristics in Chinese patients with malignant lymphoma. 展开更多
关键词 Class I pi3k inhibitors EFFICACY hematolymphatic malignancies SAFETY
下载PDF
PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance 被引量:20
8
作者 Merritt P Edlind Andrew C Hsieh 《Asian Journal of Andrology》 SCIE CAS CSCD 2014年第3期378-386,共9页
Prostate cancer (PCa) is the second most common malignancy among men in the world. Castration-resistant prostate cancer (CRPC) is the lethal form of the disease, which develops upon resistance to first line androg... Prostate cancer (PCa) is the second most common malignancy among men in the world. Castration-resistant prostate cancer (CRPC) is the lethal form of the disease, which develops upon resistance to first line androgen deprivation therapy (ADT). Emerging evidence demonstrates a key role for the PI3K-AKT-mTOR signaling axis in the development and maintenance of CRPC. This pathway, which is deregulated in the majority of advanced PCas, serves as a critical nexus for the integration of growth signals with downstream cellular processes such as protein synthesis, proliferation, survival, metabolism and differentiation, thus providing mechanisms for cancer cells to overcome the stress associated with androgen deprivation. Furthermore, preclinical studies have elucidated a direct connection between the PI3K-AKT-mTOR and androgen receptor (AR) signaling axes, revealing a dynamic interplay between these pathways during the development of ADT resistance. Thus, there is a clear rationale for the continued clinical development of a number of novel inhibitors of the PI3K pathway, which offer the potential of blocking CRPC growth and survival. In this review, we will explore the relevance of the PI3K-AKT-mTOR pathway in PCa progression and castration resistance in order to inform the clinical development of specific pathway inhibitors in advanced PCa. In addition, we will highlight current deficiencies in our clinical knowledge, most notably the need for biomarkers that can accurately predict for response to PI3K pathway inhibitors. 展开更多
关键词 androgen receptor CRPC kinase inhibitors MTOR prostate cancer pi3k resistance
下载PDF
Complement C3a activates osteoclasts by regulating the PI3K/PDK1/SGK3 pathway in patients with multiple myeloma 被引量:3
9
作者 Fengjuan Jiang Hui Liu +10 位作者 Fengping Peng Zhaoyun Liu Kai Ding Jia Song Lijuan Li Jin Chen Qing Shao Siyang Yan Kim De Veirman Karin Vanderkerken Rong Fu 《Cancer Biology & Medicine》 SCIE CAS CSCD 2021年第3期721-733,共13页
Objective:Myeloma bone disease(MBD)is the most common complication of multiple myeloma(MM).Our previous study showed that the serum levels of C3/C4 in MM patients were significantly positively correlated with the seve... Objective:Myeloma bone disease(MBD)is the most common complication of multiple myeloma(MM).Our previous study showed that the serum levels of C3/C4 in MM patients were significantly positively correlated with the severity of bone disease.However,the mechanism of C3 a/C4 a in osteoclasts MM patients remains unclear.Methods:The formation and function of osteoclasts were analyzed after adding C3 a/C4 a in vitro.RNA-seq analysis was used to screen the potential pathways affecting osteoclasts,and the results were verified by Western blot,q RT-PCR,and pathway inhibitors.Results:The osteoclast area per view induced by 1μg/m L(mean±SD:50.828±12.984%)and 10μg/m L(53.663±12.685%)of C3 a was significantly increased compared to the control group(0μg/m L)(34.635±8.916%)(P<0.001 and P<0.001,respectively).The relative m RNA expressions of genes,OSCAR/TRAP/RANKL/cathepsin K,induced by 1μg/m L(median:5.041,3.726,1.638,and 4.752,respectively)and 10μg/m L(median:5.140,3.702,2.250,and 5.172,respectively)of C3 a was significantly increased compared to the control group(median:3.137,2.004,0.573,and 2.257,respectively)(1μg/m L P=0.001,P=0.003,P<0.001,and P=0.008,respectively;10μg/m L:P<0.001,P=0.019,P<0.001,and P=0.002,respectively).The absorption areas of the osteoclast resorption pits per view induced by 1μg/m L(mean±SD:51.464±11.983%)and 10μg/m L(50.219±12.067%)of C3 a was also significantly increased(33.845±8.331%)(P<0.001 and P<0.001,respectively)compared to the control.There was no difference between the C4 a and control groups.RNA-seq analysis showed that C3 a promoted the proliferation of osteoclasts using the phosphoinositide 3-kinase(PI3 K)signaling pathway.The relative expressions of PIK3 CA/phosphoinositide dependent kinase-1(PDK1)/serum and glucocorticoid inducible protein kinases(SGK3)genes and PI3 K/PDK1/p-SGK3 protein in the C3 a group were significantly higher than in the control group.The activation role of C3 a in osteoclasts of MM patients was reduced by the SGK inhibitor(EMD638683).Conclusions:C3 a activated osteoclasts by regulating the PI3 K/PDK1/SGK3 pathways in MM patients,which was reduced using a SGK inhibitor.Overall,our results identified potential therapeutic targets and strategies for MBD patients。 展开更多
关键词 Multiple myeloma complement C3a OSTEOCLASTS pi3k/PDk1/SGk3 pathways SGk inhibitor
下载PDF
Insensitivity of PI3K/Akt/GSK3 signaling in peripheral blood mononuclear cells of age-related macular degeneration patients 被引量:2
10
作者 Xunxian Liu Zemin Yao 《The Journal of Biomedical Research》 CAS CSCD 2017年第3期248-255,共8页
Our recent studies with cultured retinal pigment epithelium cells suggested that overexpression of interleukin 17 receptor C(IL-17RC),a phenomenon observed in peripheral blood and chorioretinal tissues with age-rela... Our recent studies with cultured retinal pigment epithelium cells suggested that overexpression of interleukin 17 receptor C(IL-17RC),a phenomenon observed in peripheral blood and chorioretinal tissues with age-related macular degeneration(AMD),was associated with altered activation of phosphatidylinositide 3-kinase(PI3K),Akt,and glycogen synthase kinase 3(GSK3).We wondered whether or not altered PI3 K,Akt,and GSK3 activities could be detected in peripheral blood mononuclear cells(PBMC) obtained from AMD patients.In the patients' PBMC,absent or reduced serine-phosphorylation of GSK3α or GSK3β was observed,which was accompanied with increased phosphorylation of GSK3 substrates(e.g.CCAAT enhancer binding protein a,insulin receptor substrate 1,and TAU),indicative of enhanced GSK3 activation.In addition,decreased protein mass of PI3K85α and tyrosinephosphorylation of PI3K50α was present in PBMC of the AMD patients,suggesting impaired PI3 K activation.Moreover,abnormally lowered molecular weight forms of Akt and GSK3 were detected in PBMC of the AMD patients.These data demonstrate that despite the presence of high levels of IL-17 RC,Wnt-3a and vascular endothelial growth factor,the PI3K/Akt/GSK3 signaling pathway is insensitive to these stimuli in PBMC of the AMD patients.Thus,measurement of PI3K/Akt/GSK3 expression and activity in PBMC may serve as a surrogate biomarker for AMD. 展开更多
关键词 phosphatidylinositide 3-kinase pi3k protein kinase B (PkB or Akt) glycogen synthase kinase 3(GSk3 age-related macular degeneration (AMD) peripheral blood mononuclear cells (PBMC)
下载PDF
First total synthesis,antitumor evaluation and target identification of mornaphthoate E:A new tubulin inhibitor template acting on PI3K/Akt signaling pathway
11
作者 Peipei Shan Tao Ye +8 位作者 Ying-De Tang Hui Song Chao Wang Kongkai Zhu Feifei Yang Shi-Lei Zhang Pei-Wen Su Shuanhu Gao Hua Zhang 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2024年第5期2177-2193,共17页
Mornaphthoate E(MPE)is a prenylated naphthoic acid methyl ester isolated from the roots of a famous Chinese medicinal plant Morinda officinalis and shows remarkable cytotoxicity against several human tumor cell lines.... Mornaphthoate E(MPE)is a prenylated naphthoic acid methyl ester isolated from the roots of a famous Chinese medicinal plant Morinda officinalis and shows remarkable cytotoxicity against several human tumor cell lines.In the current project,the first total synthesis of(±)-MPE was achieved in seven steps and 5.6%overall yield.Then the in vitro anti-tumor activity of MPE was first assessed for both enantiomers in two breast cancer cells,with the levoisomer exerting slightly better potency.The in vivo anti-tumor effect was further verified by applying the racemate in an orthotopic autograft mouse model.Notably,MPE exerted promising anti-metastasis activity both in vitro and in vivo and showed no obvious toxicity on mice at the therapeutic dosage.Mechanistic investigations demonstrated that MPE acted as a tubulin polymerization stabilizer and disturbed the dynamic equilibrium of microtubules via regulating PI3K/Akt signaling.In conclusion,our work has provided a new chemical template for the future design and development of next-generation tubulin-targeting chemotherapies. 展开更多
关键词 Mornaphthoate E Tubulin inhibitor ANTITUMOR ANTI-METASTASIS Breast cancer pi3k/AkT
原文传递
Regulatory Effects of Zuogui Pill on Apoptosis of Follicles in Rats Injured by 60Co-γRays Based on PI3K/Akt/m TOR Signaling Pathway
12
作者 Fenqin ZHAO Mingxia AN +4 位作者 Xiaonan DING Jieying LIU Yan ZHAO Zhihui XIE Shuping LI 《Medicinal Plant》 CAS 2022年第5期45-50,58,共7页
[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signal... [Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signaling pathway.[Methods]Sixty sexually mature female SD rats were irradiated with ^(60)Co-γ-ray(6.0 Gy,LD 40)for 24 h at one time.These rats were randomly divided into model group,Progynova group[0.18(g·kg)/d],Progynova[0.09(g·kg)/d]+Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill medium dose[9.45(g·kg)/d)]group and Zuogui Pill low dose[4.725(g·kg)/d]group.The administration(once a day)lasted 21 d.The rat serum[follicle-stimulating hormone(FSH),luteinizing hormone(LH)and estradiol(E_(2))]were detected by Enzyme-linked immunosorbent assay(ELISA).The morphological changes of ovary were observed by hematoxylin-eosin(HE)staining.The apoptosis rate of granulosa cells was detected by terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling(TUNEL).The protein expression of phosphorylated(p)-PI3K,p-Akt,p-mTOR,B-cell lymphoma-2(Bcl-2),and Bcl-2-associated X protein(Bax)in ovarian tissues were detected by Western blot.[Results]Compared with the normal group,the model group showed significant increase in the serum FSH(P<0.01),significant decrease in serum E_(2)(P<0.05),and decrease in the number of early follicles and luteum in the ovary(P<0.01).Besides,the apoptosis rate of granulosa cells increased significantly(P<0.01);the expression of p-PI3K,p-Akt,p-mTOR and Bcl-2 in ovarian tissue decreased significantly,while the expression of Bax increased significantly(P<0.01).Compared with the model group,the number of early follicles in the ovary increased and the apoptosis rate of granulosa cells decreased after intervention in each administration group.In addition,the protein expressions of p-PI3K,p-Akt,p-mTOR and Bcl-2 increased,while the expression of Bax decreased,especially in Progynova+Zuogui Pill high dose group,the differences were statistically significant(P<0.05,P<0.01).[Conclusions]Zuogui Pill may protect the radiation-injured ovary through activating the expression of PI3K/Akt/mTOR protein in ovarian tissue,increasing the amount of Bcl-2 protein and inhibiting the expression of Bax protein. 展开更多
关键词 Radiation injury Premature ovarian failure(POF) Zuogui pill Terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling(TUNEL) phosphatidylinositol-3-kinases/protein kinase B/mammalian target of rapamycin(pi3k/Akt/mTOR)signaling pathway B-cell lymphoma-2 Bcl-2-associated X protein
下载PDF
特异性p^(38)MAPK抑制剂SB203580对乳鼠小脑颗粒神经元的保护作用
13
作者 黎明涛 王文雅 +1 位作者 林穗珍 颜光美 《药学学报》 CAS CSCD 北大核心 2000年第7期496-499,共4页
目的 研究 p38丝裂原激活蛋白激酶 (MAPK)选择性抑制剂SB2 0 35 80对乳鼠小脑颗粒神经元凋亡的保护作用。方法 SD乳鼠小脑颗粒神经元培养 ,琼脂糖凝胶电泳 ,SAPK/JNK分析试剂盒作激酶分析。结果 PI 3 K的特异性抑制剂LY2 940 0 2诱... 目的 研究 p38丝裂原激活蛋白激酶 (MAPK)选择性抑制剂SB2 0 35 80对乳鼠小脑颗粒神经元凋亡的保护作用。方法 SD乳鼠小脑颗粒神经元培养 ,琼脂糖凝胶电泳 ,SAPK/JNK分析试剂盒作激酶分析。结果 PI 3 K的特异性抑制剂LY2 940 0 2诱导小脑颗粒神经元凋亡 ,但SB2 0 35 80通过抑制细胞凋亡而促进小脑颗粒神经元的存活 ,且有浓度依赖性。LY2 940 0 2诱导凋亡的颗粒神经元中c Jun的表达量和磷酸化水平均升高 ,JNK被激活。但是 ,当小脑颗粒神经元生长在含SB2 0 35 80的高钾培养基中 ,c Jun的表达量、磷酸化水平和JNK的活性都明显的降低。结论 SB2 0 35 80通过抑制JNK的活性 ,降低c Jun的表达和磷酸化水平 。 展开更多
关键词 特异性p38MAPk抑制剂 小脑颗粒神经元 细胞凋亡
下载PDF
Tongxinluo Activates PI3K/AKT Signaling Pathway to Inhibit Endothelial Mesenchymal Transition and Attenuate Myocardial Fibrosis after Ischemia-Reperfusion in Mice 被引量:2
14
作者 WEI Ya-ru HOU Yun-long +10 位作者 YIN Yu-jie LI Zhen LIU Yi HAN Ning-xin WANG Zi-xuan LIU Lu WANG Xiao-qi HAO Yuan-jie MA Kun GU Jiao-jiao JIA Zhen-hua 《Chinese Journal of Integrative Medicine》 SCIE CAS CSCD 2024年第7期608-615,共8页
Objective To investigate the potential role of Tongxinluo(TXL)in attenuating myocardial fibrosis after myocardial ischemia-reperfusion injury(MIRI)in mice.Methods A MIRI mouse model was established by left anterior de... Objective To investigate the potential role of Tongxinluo(TXL)in attenuating myocardial fibrosis after myocardial ischemia-reperfusion injury(MIRI)in mice.Methods A MIRI mouse model was established by left anterior descending coronary artery ligation for 45 min.According to a random number table,66 mice were randomly divided into 6 groups(n=11 per group):the sham group,the model group,the LY-294002 group,the TXL group,the TXL+LY-294002 group and the benazepril(BNPL)group.The day after modeling,TXL and BNPL were administered by gavage.Intraperitoneal injection of LY-294002 was performed twice a week for 4 consecutive weeks.Echocardiography was used to measure cardiac function in mice.Masson staining was used to evaluate the degree of myocardial fibrosis in mice.Qualitative and quantitative analysis of endothelial mesenchymal transition(EndMT)after MIRI was performed by immunohistochemistry,immunofluorescence staining and flow cytometry,respectively.The protein expressions of platelet endothelial cell adhesion molecule-1(CD31),α-smoth muscle actin(α-SMA),phosphatidylinositol-3-kinase(PI3K)and phospho protein kinase B(p-AKT)were assessed using Western blot.Results TXL improved cardiac function in MIRI mice,reduced the degree of myocardial fibrosis,increased the expression of CD31 and inhibited the expression ofα-SMA,thus inhibited the occurrence of EndMT(P<0.05 or P<0.01).TXL significantly increased the protein expressions of PI3K and p-AKT(P<0.05 or P<0.01).There was no significant difference between TXL and BNPL group(P>0.05).In addition,the use of the PI3K/AKT pathway-specific inhibitor LY-294002 to block this pathway and combination with TXL intervention,eliminated the protective effect of TXL,further supporting the protective effect of TXL.Conclusion TXL activated the PI3K/AKT signaling pathway to inhibit EndMT and attenuated myocardial fibrosis after MIRI in mice. 展开更多
关键词 myocardial fibrosis endothelial mesenchymal transition myocardial ischemia-reperfusion injury phosphatidylinositol-3-kinase/protein kinase B(pi3k/AkT)pathway
原文传递
Nuclear accumulation of β-catenin and forkhead box O3a in colon cancer:Dangerous liaison 被引量:2
15
作者 Wolfgang Link 《World Journal of Biological Chemistry》 CAS 2012年第9期175-179,共5页
The WNT/-catenin and phosphoinositide 3-kinase(PI3K/AKT) signaling cascades both have been implicated in the formation and progression of colorectal cancer.Oncogenic PI3K/AKT signaling suppresses the activity of forkh... The WNT/-catenin and phosphoinositide 3-kinase(PI3K/AKT) signaling cascades both have been implicated in the formation and progression of colorectal cancer.Oncogenic PI3K/AKT signaling suppresses the activity of forkhead box O3a(FOXO3a) transcription factor through phosphorylation leading to its nuclear exclusion.Inhibition of the PI3K/AKT signaling by PI3K or AKT inhibitors results in the translocation of FOXO3a to the nucleus,and is considered to be a promising therapeutic strategy for many cancers including colon cancer.Now,however,a new study in Nature Medicine has revealed a nuclear interaction of-catenin with FOXO3a as a promoter of metastatic progression in colon cancer.The work has important implications for the treatment of colon cancers,suggests a companion biomarker strategy to enable a personalized medicine approach,and offers an alternative therapeutic strategy to overcome resistance to PI3K and AKT inhibitors. 展开更多
关键词 Colon cancer -CATENIN FORkHEAD BOX O3a Metastasis Drug resistance pi3k/AkT inhibitorS TANkYRASE inhibitorS Personalized medicine Xenopatient
下载PDF
Liposomalα-cyperone targeting bone resorption surfaces suppresses osteoclast differentiation and osteoporosis progression via the PI3K/Akt axis
16
作者 Lin Yang Xueying An +7 位作者 Wang Gong Wenshu Wu Bin Liu Xiaoyan Shao Yansi Xian Rui Peng Baosheng Guo Qing Jiang 《Nano Research》 SCIE EI CSCD 2024年第4期2949-2959,共11页
Osteoporosis is a metabolic dysregulation of bone that occurs mainly in postmenopausal women,and the hyperfunction of osteoclasts is the primary contributor to postmenopausal osteoporosis.However,the development of ef... Osteoporosis is a metabolic dysregulation of bone that occurs mainly in postmenopausal women,and the hyperfunction of osteoclasts is the primary contributor to postmenopausal osteoporosis.However,the development of effective therapeutic drugs and precise delivery systems remains a challenge in the field of anti-absorption therapy.Here,we reported theα-cyperone(α-CYP)for anti-osteoporosis and developed a liposome-based nano-drug delivery system ofα-CYP,that specifically targets the bone resorption interface.Firstly,we found that theα-CYP,one of the major sesquiterpenes of Cyperus rotundus L.,attenuated the progression of osteoporosis in ovariectomized(OVX)mice and down-regulated the expression of phosphorylated proteins of phosphoinositide 3-kinase(PI3K)and protein kinase B(Akt),causing down-regulation of osteoclast-related genes/proteins and curbing osteoclast differentiation.Furthermore,α-CYP reversed the activation of osteoclastic differentiation and enhanced osteoporosis-related proteins expression caused by PI3K/Akt agonist(YS-49).More importantly,we adopted the osteoclastic resorption surface targeting peptide Asp8 and constructed the liposome(lipαC@Asp8)to deliverα-CYP to osteoclasts and confirmed its anti-osteoporosis effect and enhanced osteoclast inhibition by blocking PI3K/Akt axis.In conclusion,this study demonstrated thatα-CYP inhibits osteoclast differentiation and osteoporosis development by silencing PI3K/Akt pathway,and the liposome targeting delivery systems loaded withα-CYP might provide a novel and effective strategy to treat osteoporosis. 展开更多
关键词 OSTEOPOROSIS Α-CYPERONE OSTEOCLAST phosphoinositide 3-kinase/protein kinase B(pi3k/Akt) liposome
原文传递
Overexpressed Cyclin D1 and CDK4 proteins are responsible for the resistance to CDK4/6 inhibitor in breast cancer that can be reversed by PI3K/mTOR inhibitors 被引量:13
17
作者 Zijie Cai Jingru Wang +14 位作者 Yudong Li Qianfeng Shi Liang Jin Shunying Li Mengdi Zhu Qi Wang Lok Lam Wong Wang Yang Hongna Lai Chang Gong Yandan Yao Yujie Liu Jun Zhang Herui Yao Qiang Liu 《Science China(Life Sciences)》 SCIE CAS CSCD 2023年第1期94-109,共16页
CDK4/6 inhibitors are the standard treatment in advanced HR+/HER2-breast cancer patients.Nevertheless,the resistance to CDK4/6 inhibitors is inevitable and the strategies to overcome resistance are of great interest.H... CDK4/6 inhibitors are the standard treatment in advanced HR+/HER2-breast cancer patients.Nevertheless,the resistance to CDK4/6 inhibitors is inevitable and the strategies to overcome resistance are of great interest.Here,we show that the palbociclibresistant breast cancer cells expressed significantly higher levels of Cyclin D1 and CDK4 proteins because of upregulated protein synthesis.Silencing Cyclin D1 or CDK4 led to cell cycle arrest while silencing Cyclin E1 or CDK2 restored the sensitivity to palbociclib.Furthermore,PI3K/mTOR pathway was hyper-activated in palbociclib-resistant cells,leading to more phosphorylated 4E-BP1 and higher levels of Cyclin D1 and CDK4 translation.Targeting PI3K/mTOR pathway with a specific PI3Kαinhibitor(BYL719)or an mTOR inhibitor(everolimus)reduced the protein levels of Cyclin D1 and CDK4,and restored the sensitivity to palbociclib.The tumor samples expressed significantly higher levels of Cyclin D1,CDK4,p-AKT and p-4E-BP1 after progression on palbociclib treatment.In conclusion,our findings suggest that overexpressed Cyclin D1 and CDK4 proteins lead to the resistance to CDK4/6 inhibitor and PI3K/mTOR inhibitors are able to restore the sensitivity to CDK4/6 inhibitors,which provides the biomarker and rationale for the combinational use of CDK4/6 inhibitors and PI3K/mTOR inhibitors after CDK4/6 inhibitor resistance in breast cancer. 展开更多
关键词 CDk4/6 inhibitor RESISTANCE pi3k/mTOR inhibitor Cyclin D1 CDk4
原文传递
Class I phosphatidylinositol 3-kinase inhibitors for cancer therapy 被引量:21
18
作者 Wennan Zhao Yuling Qiu Dexin Kong 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2017年第1期27-37,共11页
The phosphatidylinositol 3-kinase(PI3K) pathway is frequently activated in human cancers.Class I PI3 Ks are lipid kinases that phosphorylate phosphatidylinositol 4,5-bisphosphate(PIP2) at the 3-OH of the inositol ring... The phosphatidylinositol 3-kinase(PI3K) pathway is frequently activated in human cancers.Class I PI3 Ks are lipid kinases that phosphorylate phosphatidylinositol 4,5-bisphosphate(PIP2) at the 3-OH of the inositol ring to generate phosphatidylinositol 3,4,5-trisphosphate(PIP3), which in turn activates Akt and the downstream effectors like mammalian target of rapamycin(m TOR) to play key roles in carcinogenesis. Therefore, PI3 K has become an important anticancer drug target, and currently there is very high interest in the pharmaceutical development of PI3 K inhibitors. Idelalisib has been approved in USA and Europe as the first-in-class PI3 K inhibitor for cancer therapy. Dozens of other PI3 K inhibitors including BKM120 and ZSTK474 are being evaluated in clinical trials. Multifaceted studies on these PI3 K inhibitors are being performed, such as single and combinational efficacy, resistance, biomarkers,etc. This review provides an introduction to PI3 K and summarizes key advances in the development of PI3 K inhibitors. 展开更多
关键词 phosphatidylinositol 3-kinase pi3k inhibitor Drug candidate Cancer therapy pi3k/m TOR selectivity ANTICANCER
原文传递
Human neural stem cell-derived extracellular vesicles protect against ischemic stroke by activating the PI3K/AKT/mTOR pathway
19
作者 Jiayi Wang Mengke Zhao +5 位作者 Dong Fu Meina Wang Chao Han Zhongyue Lv Liang Wang Jing Liu 《Neural Regeneration Research》 SCIE CAS 2025年第11期3245-3258,共14页
Human neural stem cell-derived extracellular vesicles exhibit analogous functions to their parental cells,and can thus be used as substitutes for stem cells in stem cell therapy,thereby mitigating the risks of stem ce... Human neural stem cell-derived extracellular vesicles exhibit analogous functions to their parental cells,and can thus be used as substitutes for stem cells in stem cell therapy,thereby mitigating the risks of stem cell therapy and advancing the frontiers of stem cell-derived treatments.This lays a foundation for the development of potentially potent new treatment modalities for ischemic stroke.However,the precise mechanisms underlying the efficacy and safety of human neural stem cell-derived extracellular vesicles remain unclear,presenting challenges for clinical translation.To promote the translation of therapy based on human neural stem cell-derived extracellular vesicles from the bench to the bedside,we conducted a comprehensive preclinical study to evaluate the efficacy and safety of human neural stem cell-derived extracellular vesicles in the treatment of ischemic stroke.We found that administration of human neural stem cell-derived extracellular vesicles to an ischemic stroke rat model reduced the volume of cerebral infarction and promoted functional recovery by alleviating neuronal apoptosis.The human neural stem cell-derived extracellular vesicles reduced neuronal apoptosis by enhancing phosphorylation of phosphoinositide 3-kinase,mammalian target of rapamycin,and protein kinase B,and these effects were reversed by treatment with a phosphoinositide 3-kinase inhibitor.These findings suggest that human neural stem cell-derived extracellular vesicles play a neuroprotective role in ischemic stroke through activation of phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway.Finally,we showed that human neural stem cell-derived extracellular vesicles have a good in vivo safety profile.Therefore,human neural stem cell-derived extracellular vesicles are a promising potential agent for the treatment of ischemic stroke. 展开更多
关键词 behavior exosome extracellular vesicles ischemic stroke mammalian target of rapamycin(mTOR) middle cerebral artery occlusion neural stem cells neuronal apoptosis phosphoinositide 3-kinase(pi3k) protein kinase B(AkT)
下载PDF
Modulation of synaptic damage by Bushen Tiansui Decoction via the PI3K signaling pathway in an Alzheimer’s disease model
20
作者 HUI Shan ZHENG Qing +4 位作者 LI Hongli ZHU Lemei WU Beibei LIANG Lihui YANG Jingjing 《Digital Chinese Medicine》 CAS 2024年第3期284-293,共10页
Objective To explore the therapeutic effect and mechanism of Bushen Tiansui Decoction(补肾填髓方,BSTSD)and its active component icariin on Alzheimer’s disease(AD).Methods(i)Animal experiments.This study conducted exp... Objective To explore the therapeutic effect and mechanism of Bushen Tiansui Decoction(补肾填髓方,BSTSD)and its active component icariin on Alzheimer’s disease(AD).Methods(i)Animal experiments.This study conducted experiments using specific pathogen-free(SPF)grade male C57BL/6J wild-type(WT)mice and APP/PS1 double transgenic mice.The animals were divided into three groups:WT group(WT mice,n=5,receiving distilled wa-ter daily),APP/PS1 group(APP/PS1 double transgenic mice,n=5,receiving distilled water daily),and BSTSD group[APP/PS1 double transgenic mice,n=5,treated with BSTSD suspen-sion at a dosage of 27 g/(kg·d)for 90 d].Cognitive function was assessed using the Morris wa-ter maze(MWM).Post-experiment,hippocampal tissues were collected for analysis of pyra-midal cell and synaptic morphology through hematoxylin-eosin(HE)staining and transmis-sion electron microscopy(TEM).(ii)Cell experiments.The HT-22 cells were divided into con-trol group(untreated),Aβ_(25-35) group(treated with 20μmol/L Aβ_(25-35) for 24 h),icariin group(pre-treated with 20μmol/L icariin for 60 min,followed by 20μmol/L Aβ_(25-35) for an additional 24 h),and icariin+LY294002 group[treated with 20μmol/L icariin and 20μmol/L LY294002(an inhibitor of the phosphoinostitide 3-kinases(PI3K)signaling pathway)for 60 min,then exposed to 20μmol/L Aβ_(25-35) for 24 h],and cell viability was measured.Western blot was used to detect the expression levels of synapse-associated proteins[synaptophysin(SYP)and post-synaptic density-95(PSD-95)]and PI3K signaling pathway associated proteins[phosphorylat-ed(p)-PI3K/PI3K,p-protein kinase B(Akt)/Akt,and p-mechanistic target of rapamycin(mTOR)/mTOR].Results(i)Animal experiments.Compared with APP/PS1 group,BSTSD group showed that escape latency was significantly shortened(P<0.01)and the frequency of crossing the origi-nal platform was significantly increased(P<0.01).Morphological observation showed that pyramidal cells in the hippocampal CA1 region were arranged more regularly,nuclear stain-ing was uniform,and vacuole-like changes were reduced after BSTSD treatment.TEM showed that the length of synaptic active zone in BSTSD treatment group was increased com-pared with APP/PS1 group(P<0.01),and the width of synaptic gap was decreased(P<0.01).(ii)Cell experiments.Icariin had no obvious toxicity to HT-22 cells when the concentration was not more than 20μmol/L(P>0.05),and alleviated the cell viability decline induced by Aβ_(25-35)(P<0.01).Western blot results showed that compared with Aβ_(25-35) group,the ratios of p-PI3K/PI3K,p-Akt/Akt and p-mTOR/mTOR in icariin group were significantly increased(P<0.01),while the protein expression levels of SYP and PSD-95 were increased(P<0.01).These effects were blocked by LY294002(P<0.01).Conclusion BSTSD and icariin enhance cognitive function and synaptic integrity in AD mod-els and provide potential therapeutic strategies through activation of the PI3K/Akt/mTOR pathway. 展开更多
关键词 Alzheimer’s disease(AD) Synapses Bushen Tiansui Decoction(补肾填髓方 BSTSD) Icariin Phosphoinostitide 3-kinases(pi3k)
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部