Alkaline sphingomyelinase cleaves phosphocholine from sphingomyelin, platelet-activating factor, lysophosphatidylcholine, and less effectively phosphatidyl-choline. The enzyme shares no structure similarities with aci...Alkaline sphingomyelinase cleaves phosphocholine from sphingomyelin, platelet-activating factor, lysophosphatidylcholine, and less effectively phosphatidyl-choline. The enzyme shares no structure similarities with acid or neutral sphingomyelinase but belongs to ectonucleotide pyrophosphatase/phosphodiesterase(NPP) family and therefore is also called NPP7 nowadays. The enzyme is expressed in the intestinal mucosa in many species and additionally in human liver. The enzyme in the intestinal tract has been extensively studied but not that in human liver. Studies on intestinal alkaline sphingomyelinase show that it inhibits colonic tumorigenesis and inflammation, hydrolyses dietary sphingomyelin, and stimulates cholesterol absorption. The review aims to summarize the current knowledge on liver alkaline sphingomyelinase in human and strengthen the necessity for close study on this unique human enzyme in hepatobiliary diseases.展开更多
基金supported from grants of Swedish Research CouncilSwedish Cancerfonden+2 种基金Albert P?hlsson FoundationCrafoord Foundationfoundation of Region Skane University Hospital, Lund, Sweden
文摘Alkaline sphingomyelinase cleaves phosphocholine from sphingomyelin, platelet-activating factor, lysophosphatidylcholine, and less effectively phosphatidyl-choline. The enzyme shares no structure similarities with acid or neutral sphingomyelinase but belongs to ectonucleotide pyrophosphatase/phosphodiesterase(NPP) family and therefore is also called NPP7 nowadays. The enzyme is expressed in the intestinal mucosa in many species and additionally in human liver. The enzyme in the intestinal tract has been extensively studied but not that in human liver. Studies on intestinal alkaline sphingomyelinase show that it inhibits colonic tumorigenesis and inflammation, hydrolyses dietary sphingomyelin, and stimulates cholesterol absorption. The review aims to summarize the current knowledge on liver alkaline sphingomyelinase in human and strengthen the necessity for close study on this unique human enzyme in hepatobiliary diseases.