[ Objective] The aim of this study was to introduce Phosphoenolpyruvate Carboxylase (PEPCase) gene into common wheat Linyou 145. [ Method] With the material of common wheat Linyou 145, Phosphoenolpyruvate Carboxyla...[ Objective] The aim of this study was to introduce Phosphoenolpyruvate Carboxylase (PEPCase) gene into common wheat Linyou 145. [ Method] With the material of common wheat Linyou 145, Phosphoenolpyruvate Carboxylase (PEPCase) gene was introduced into wheat embryo callus by the agrobacterium-mediated transformation system, and then analyzed through successive selection with selective medium con- taing gygrornycin to detect the gene at the molecular level. [Result] The hyg-resistant plants were obtained, and GUS histochemical staining showed the leaf of resistant plants was stained dark blue. The target bands appeared in PCR analysis. [ Conclusion] Phosphoenolpyruvate Car- boxylase (PEPCase) gene has been primarily introduced into the recipient material.展开更多
Three F3 hybrids derived from the sterile rice lines Gang 46A, 776A and 2480A and the improved restorer line Shuhui 881 containing maize phosphoenolpyruvate carboxylase (pepc) gene were used to analyze the effect of...Three F3 hybrids derived from the sterile rice lines Gang 46A, 776A and 2480A and the improved restorer line Shuhui 881 containing maize phosphoenolpyruvate carboxylase (pepc) gene were used to analyze the effect of pepc gene on the heterosis and photosynthetic characteristics, while the F3 obtained by crossing Shuhui 881 with the above three sterile lines served as controls. The dynamics of photosynthetic characteristics in leaves of three F1 with pepc gene and their controls were determined at the initial-tillering, maxium-tillering, elongation, initial-heading, heading, maturity stages, and other different times after flag leaf fully expanded. The PEPCase activities of the three F1 with pepc gene increased significantly as compared with control plants during the whole developmental stages. Moreover, the net photosynthesis rate (Pn) also increased to certain extent. The data showed that PEPCase activity was significantly correlated to Pn with a correlation coefficient of 0.6081. The photosynthetic indexes of the three F1 with pepc gene were obviously superior to respective controls in apparent quantum efficiency, light compensation point and carboxylation efficiency, while the CO2 compensation point was lower than that of corresponding control. The Pn of the three F1 with pepc gene at light saturation point and CO2 saturation point was also higher than that of control plants. in addition, the three F1 with pepc gene had an average increase of 37.10% in grain yields per plant in comparison with control plants. The results indicated that the photosynthetic characteristics of hybrid rice containing pepc gene had been improved to some extent due to the introduction of pepc gene.展开更多
Phosphoenolpyruvate carboxylase (PEPC) is widely distributed in plants and bacteria, and catalyzes the carboxylation of phosphoenolpyruvate to form oxaloacetate and inorganic phosphate. To investigate the molecular ...Phosphoenolpyruvate carboxylase (PEPC) is widely distributed in plants and bacteria, and catalyzes the carboxylation of phosphoenolpyruvate to form oxaloacetate and inorganic phosphate. To investigate the molecular mechanisms of the regulation and control of peanut oil, with the degenerated primers and RACE-PCR approach, five PEPC genes were cloned from peanut, and designated as AhPEPC1, AhPEPC2, AhPEPC3, AhPEPC4, and AhPEPC5, respectively. The structure and phylogenetic analysis of PEPC protein indicated that AhPEPC1-4 genes encoded a typical plant-type PEPC-enzyme, and AhPEPC5 a bacterial-type. By real-time quantitative RT-PCR approach the expression pattern of each gene was detected in various tissues of normal and high oil-content peanut varieties. It was found that there was a lower expression level of AhPEPCs genes except for the AhPEPC2 in high-oil peanut than normal-oil peanut line. The results provide some fundamental information for the further investigation of plant PEPC proteins and their role in regulation of oil-content in peanut seeds.展开更多
Phosphoenolpyruvate carboxylase(PEPC;EC 4.1.1.31) catalyses phosphoenolpyruvate(PEP) to yield oxaloacetate,which is involved in protein biosynthesis.Pyruvate kinase(PK;EC 2.7.1.40) catalyzes PEP to yield pyruvat...Phosphoenolpyruvate carboxylase(PEPC;EC 4.1.1.31) catalyses phosphoenolpyruvate(PEP) to yield oxaloacetate,which is involved in protein biosynthesis.Pyruvate kinase(PK;EC 2.7.1.40) catalyzes PEP to yield pyruvate,which is involved in fatty acid synthesis.In this study,five PEPC genes(AhPEPC1,AhPEPC2,AhPEPC3,AhPEPC4,and AhPEPC5) from peanut have been cloned.Using a quantitative real-time RT-PCR approach,the expression pattern of each gene was monitored during the seed development of four peanut varieties(E11,Hebeigaoyou,Naihan 1,and Huayu 26).It was found that these five genes shared similar expression behaviors over the developmental stages of E11 with high expression levels at 30 and 40 d after pegging(DAP);whereas these five genes showed irregular expression patterns during the seed development of Hebeigaoyou.In Naihan 1 and Huayu 26,the expression levels of the five genes remained relatively high in the first stage.The PEPC activity was monitored during the seed development of four peanut varieties and seed oil content was also characterized during whole period of seed development.The PEPC activity followed the oil accumulation pattern during the early stages of development but they showed a significantly negative correlation thereafter.These results suggested that PEPC may play an important role in lipid accumulation during the seed development of four peanut varieties tested.展开更多
文摘[ Objective] The aim of this study was to introduce Phosphoenolpyruvate Carboxylase (PEPCase) gene into common wheat Linyou 145. [ Method] With the material of common wheat Linyou 145, Phosphoenolpyruvate Carboxylase (PEPCase) gene was introduced into wheat embryo callus by the agrobacterium-mediated transformation system, and then analyzed through successive selection with selective medium con- taing gygrornycin to detect the gene at the molecular level. [Result] The hyg-resistant plants were obtained, and GUS histochemical staining showed the leaf of resistant plants was stained dark blue. The target bands appeared in PCR analysis. [ Conclusion] Phosphoenolpyruvate Car- boxylase (PEPCase) gene has been primarily introduced into the recipient material.
文摘Three F3 hybrids derived from the sterile rice lines Gang 46A, 776A and 2480A and the improved restorer line Shuhui 881 containing maize phosphoenolpyruvate carboxylase (pepc) gene were used to analyze the effect of pepc gene on the heterosis and photosynthetic characteristics, while the F3 obtained by crossing Shuhui 881 with the above three sterile lines served as controls. The dynamics of photosynthetic characteristics in leaves of three F1 with pepc gene and their controls were determined at the initial-tillering, maxium-tillering, elongation, initial-heading, heading, maturity stages, and other different times after flag leaf fully expanded. The PEPCase activities of the three F1 with pepc gene increased significantly as compared with control plants during the whole developmental stages. Moreover, the net photosynthesis rate (Pn) also increased to certain extent. The data showed that PEPCase activity was significantly correlated to Pn with a correlation coefficient of 0.6081. The photosynthetic indexes of the three F1 with pepc gene were obviously superior to respective controls in apparent quantum efficiency, light compensation point and carboxylation efficiency, while the CO2 compensation point was lower than that of corresponding control. The Pn of the three F1 with pepc gene at light saturation point and CO2 saturation point was also higher than that of control plants. in addition, the three F1 with pepc gene had an average increase of 37.10% in grain yields per plant in comparison with control plants. The results indicated that the photosynthetic characteristics of hybrid rice containing pepc gene had been improved to some extent due to the introduction of pepc gene.
基金supported by the National High Tech-nology Research and Development Program of China(2006AA10A114)the National Basic Research Program of China (2007CB116212)+1 种基金the Natural Science Fundation of Shangdong Province, China(ZR2009DQ004)the Key Technology Research Project of Qingdao, China (07-1-4-16-nsh)
文摘Phosphoenolpyruvate carboxylase (PEPC) is widely distributed in plants and bacteria, and catalyzes the carboxylation of phosphoenolpyruvate to form oxaloacetate and inorganic phosphate. To investigate the molecular mechanisms of the regulation and control of peanut oil, with the degenerated primers and RACE-PCR approach, five PEPC genes were cloned from peanut, and designated as AhPEPC1, AhPEPC2, AhPEPC3, AhPEPC4, and AhPEPC5, respectively. The structure and phylogenetic analysis of PEPC protein indicated that AhPEPC1-4 genes encoded a typical plant-type PEPC-enzyme, and AhPEPC5 a bacterial-type. By real-time quantitative RT-PCR approach the expression pattern of each gene was detected in various tissues of normal and high oil-content peanut varieties. It was found that there was a lower expression level of AhPEPCs genes except for the AhPEPC2 in high-oil peanut than normal-oil peanut line. The results provide some fundamental information for the further investigation of plant PEPC proteins and their role in regulation of oil-content in peanut seeds.
基金supported by the China Agriculture Research System (CARS-14)the National Natural Science Foundation of China (31000728,31100205)+2 种基金the Natural Science Fundation of Shangdong Province,China(ZR2009DQ004,ZR2011CQ036)the Promotive Research Fund for Young and Middle-Aged Scientisits of Shandong Province,China (BS2010NY023)the Qingdao Municipal Science and Technology Plan Project,China (11-2-4-9-(3)-jch,11-2-3-26-nsh)
文摘Phosphoenolpyruvate carboxylase(PEPC;EC 4.1.1.31) catalyses phosphoenolpyruvate(PEP) to yield oxaloacetate,which is involved in protein biosynthesis.Pyruvate kinase(PK;EC 2.7.1.40) catalyzes PEP to yield pyruvate,which is involved in fatty acid synthesis.In this study,five PEPC genes(AhPEPC1,AhPEPC2,AhPEPC3,AhPEPC4,and AhPEPC5) from peanut have been cloned.Using a quantitative real-time RT-PCR approach,the expression pattern of each gene was monitored during the seed development of four peanut varieties(E11,Hebeigaoyou,Naihan 1,and Huayu 26).It was found that these five genes shared similar expression behaviors over the developmental stages of E11 with high expression levels at 30 and 40 d after pegging(DAP);whereas these five genes showed irregular expression patterns during the seed development of Hebeigaoyou.In Naihan 1 and Huayu 26,the expression levels of the five genes remained relatively high in the first stage.The PEPC activity was monitored during the seed development of four peanut varieties and seed oil content was also characterized during whole period of seed development.The PEPC activity followed the oil accumulation pattern during the early stages of development but they showed a significantly negative correlation thereafter.These results suggested that PEPC may play an important role in lipid accumulation during the seed development of four peanut varieties tested.