Calcium sulfate hemihydrate whiskers were synthesized successfully via one-step hydrothermal crystallization method using phosphogypsum at 130 °C for 240 min with an initial slurry mass fraction of 2.5 wt%. The p...Calcium sulfate hemihydrate whiskers were synthesized successfully via one-step hydrothermal crystallization method using phosphogypsum at 130 °C for 240 min with an initial slurry mass fraction of 2.5 wt%. The phase compositions, microstructures, thermal properties and molecular structures of asprepared samples were analyzed by XRD, ESEM, EDS, TG-DTA, and FT-IR. The influence of raw materials’ ball-milling time on the morphologies of whiskers was investigated. The effects of impurities on crystallization morphologies and length to diameter ratio(L/D) of calcium sulfate hemihydrate whiskers were studied. The results indicated that the calcium sulfate dihydrate crystalline could be translated directly into fibrous calcium sulfate hemihydrate whiskers. It was beneficial to form fine fiber structure when the ball-milling time of the raw material was 15 min. Aspect ratio of calcium sulfate hemihydrate whiskers decreased with increasing content of impurities. Moreover, the relative growth mechanism of whisker crystals via one-step hydrothermal crystallization method was discussed in detail.展开更多
将改性磷石膏晶须与高密度聚乙烯(High density polyethylene,HDPE)进行共混,通过注塑成型技术制备HDPE/磷石膏晶须复合材料,采用傅立叶转换红外光谱(FI-IR)、扫描电镜(SEM)、热分析(DSC)等技术,分析改性磷石膏晶须对HDPE复合材料力学...将改性磷石膏晶须与高密度聚乙烯(High density polyethylene,HDPE)进行共混,通过注塑成型技术制备HDPE/磷石膏晶须复合材料,采用傅立叶转换红外光谱(FI-IR)、扫描电镜(SEM)、热分析(DSC)等技术,分析改性磷石膏晶须对HDPE复合材料力学性能的影响。结果表明:改性后HDPE/磷石膏晶须复合材料的冲击强度、拉伸强度和弯曲强度分别为44.33 k J/m2、25.54 MPa和473.5 MPa,与纯HDPE相比,相应提高了31.5%、6.64%和25.15%;与未改性HDPE/磷石膏晶须复合材料相比,冲击强度提高69.13%,拉伸强度与弯曲强度分别降低1.28%和9.65%。故改性后HDPE/磷石膏晶须的综合性能较好。展开更多
基金Funded by the National High-tech Research and Development Program of China(2011AA06A106)
文摘Calcium sulfate hemihydrate whiskers were synthesized successfully via one-step hydrothermal crystallization method using phosphogypsum at 130 °C for 240 min with an initial slurry mass fraction of 2.5 wt%. The phase compositions, microstructures, thermal properties and molecular structures of asprepared samples were analyzed by XRD, ESEM, EDS, TG-DTA, and FT-IR. The influence of raw materials’ ball-milling time on the morphologies of whiskers was investigated. The effects of impurities on crystallization morphologies and length to diameter ratio(L/D) of calcium sulfate hemihydrate whiskers were studied. The results indicated that the calcium sulfate dihydrate crystalline could be translated directly into fibrous calcium sulfate hemihydrate whiskers. It was beneficial to form fine fiber structure when the ball-milling time of the raw material was 15 min. Aspect ratio of calcium sulfate hemihydrate whiskers decreased with increasing content of impurities. Moreover, the relative growth mechanism of whisker crystals via one-step hydrothermal crystallization method was discussed in detail.
文摘将改性磷石膏晶须与高密度聚乙烯(High density polyethylene,HDPE)进行共混,通过注塑成型技术制备HDPE/磷石膏晶须复合材料,采用傅立叶转换红外光谱(FI-IR)、扫描电镜(SEM)、热分析(DSC)等技术,分析改性磷石膏晶须对HDPE复合材料力学性能的影响。结果表明:改性后HDPE/磷石膏晶须复合材料的冲击强度、拉伸强度和弯曲强度分别为44.33 k J/m2、25.54 MPa和473.5 MPa,与纯HDPE相比,相应提高了31.5%、6.64%和25.15%;与未改性HDPE/磷石膏晶须复合材料相比,冲击强度提高69.13%,拉伸强度与弯曲强度分别降低1.28%和9.65%。故改性后HDPE/磷石膏晶须的综合性能较好。