期刊文献+
共找到3,343篇文章
< 1 2 168 >
每页显示 20 50 100
Fenofibrate Pre-treatment Suppressed Inflammation by Activating Phosphoinositide 3 Kinase/Protein Kinase B(PI3K/Akt) Signaling in Renal Ischemia-Reperfusion Injury 被引量:8
1
作者 杨凤杰 何永华 周建华 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2015年第1期58-63,共6页
The aim of this study was to investigate the possible beneficial effects of Fenofibrate on renal ischemia-reperfusion injury(IRI) in mice and its potential mechanism. IRI was induced by bilateral renal ischemia for ... The aim of this study was to investigate the possible beneficial effects of Fenofibrate on renal ischemia-reperfusion injury(IRI) in mice and its potential mechanism. IRI was induced by bilateral renal ischemia for 60 min followed by reperfusion for 24 h. Eighteen male C57BL/6 mice were randomly divided into three groups: sham-operated group(sham), IRI+saline group(IRI group), IRI+Fenofibrate(FEN) group. Normal saline or Fenofibrate(3 mg/kg) was intravenously injected 60 min before renal ischemia in IRI group and FEN group, respectively. Blood samples and renal tissues were collected at the end of reperfusion. The renal function, histopathologic changes, and the expression levels of pro-inflammatory cytokines [interleukin-8(IL-8), tumor necrosis factor alpha(TNF-α) and IL-6] in serum and renal tissue homogenate were assessed. Moreover, the effects of Fenofibrate on activating phosphoinositide 3 kinase/protein kinase B(PI3K/Akt) signaling and peroxisome proliferator-activated receptor-α(PPAR-α) were also measured in renal IRI. The results showed that plasma levels of blood urea nitrogen and creatinine, histopathologic scores and the expression levels of TNF-α, IL-8 and IL-6 were significantly lower in FEN group than in IRI group. Moreover, Fenofibrate pretreatment could further induce PI3K/Akt signal pathway and PPAR-α activation following renal IRI. These findings indicated PPAR-α activation by Fenofibrate exerts protective effects on renal IRI in mice by suppressing inflammation via PI3K/Akt activation. Thus, Fenofibrate could be a novel therapeutic alternative in renal IRI. 展开更多
关键词 FENOFIbRATE renal ischemia/reperfusion injury activating phosphoinositide 3 kinase/protein kinase b INFLAMMATION
下载PDF
Loss of monopolar spindle-binding protein 3B expression promotes colorectal cancer malignant behaviors by activation of target of rapamycin kinase/autophagy signaling
2
作者 Juan Sun Jin-Xiu Zhang +8 位作者 Meng-Shi Li Meng-Bin Qin Ruo-Xi Cheng Qing-Ru Wu Qiu-Ling Chen Dan Yang Cun Liao Shi-Quan Liu Jie-An Huang 《World Journal of Gastroenterology》 SCIE CAS 2024年第26期3229-3246,共18页
BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorecta... BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorectal cancer(CRC).METHODS This study collected 102 CRC tissue samples for immunohistochemical detection of MOB3B expression for association with CRC prognosis.After overexpression and knockdown of MOB3B expression were induced in CRC cell lines,changes in cell viability,migration,invasion,and gene expression were assayed.Tumor cell autophagy was detected using transmission electron microscopy,while nude mouse xenograft experiments were performed to confirm the in-vitro results.RESULTS MOB3B expression was reduced in CRC vs normal tissues and loss of MOB3B expression was associated with poor CRC prognosis.Overexpression of MOB3B protein in vitro attenuated the cell viability as well as the migration and invasion capacities of CRC cells,whereas knockdown of MOB3B expression had the opposite effects in CRC cells.At the molecular level,microtubule-associated protein light chain 3 II/I expression was elevated,whereas the expression of matrix metalloproteinase(MMP)2,MMP9,sequestosome 1,and phosphorylated mechanistic target of rapamycin kinase(mTOR)was downregulated in MOB3B-overexpressing RKO cells.In contrast,the opposite results were observed in tumor cells with MOB3B knockdown.The nude mouse data confirmed these in-vitro findings,i.e.,MOB3B expression suppressed CRC cell xenograft growth,whereas knockdown of MOB3B expression promoted the growth of CRC cell xenografts.CONCLUSION Loss of MOB3B expression promotes CRC development and malignant behaviors,suggesting a potential tumor suppressive role of MOB3B in CRC by inhibition of mTOR/autophagy signaling. 展开更多
关键词 Colorectal cancer Monopolar spindle-binding protein 3b Mechanistic target of rapamycin kinase AUTOPHAGY Prognosis
下载PDF
Osteopontin promotes gastric cancer progression via phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway
3
作者 Yue-Chao Qin Xin Yan +2 位作者 Xiao-Lin Yuan Wei-Wei Yu Fan-Jie Qu 《World Journal of Gastrointestinal Oncology》 SCIE 2023年第9期1544-1555,共12页
BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effect... BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC. 展开更多
关键词 OSTEOPONTIN Proliferation INVASION Migration Gastric cancer Phosphatidylinositol-3-kinase/protein kinase b/mammalian target of rapamycin signaling pathway
下载PDF
Protective effects of panax notoginseng saponin on dextran sulfate sodium-induced colitis in rats through phosphoinositide-3-kinase protein kinase B signaling pathway inhibition 被引量:4
4
作者 Qing-Ge Lu Li Zeng +4 位作者 Xiao-Hai Li Yu Liu Xue-Feng Du Guo-Min Bai Xin Yan 《World Journal of Gastroenterology》 SCIE CAS 2020年第11期1156-1171,共16页
BACKGROUND Intestinal inflammation is a common digestive tract disease, which is usually treated with hormone medicines. Hormone medicines are effective to some extent, but long-term use of them may bring about many c... BACKGROUND Intestinal inflammation is a common digestive tract disease, which is usually treated with hormone medicines. Hormone medicines are effective to some extent, but long-term use of them may bring about many complications.AIM To explore the protective effects of panax notoginseng saponin(PNS) against dextran sulfate sodium(DSS)-induced intestinal inflammatory injury through phosphoinositide-3-kinase protein kinase B(PI3K/AKT) signaling pathway inhibition in rats.METHODS Colitis rat models were generated via DSS induction, and rats were divided into control(no modeling), DSS, DSS + PNS 50 mg/k, and DSS + PNS 100 mg/kg groups. Then, the intestinal injury, oxidative stress parameters, inflammatory indices, tight junction proteins, apoptosis, macrophage polarization, and TLR4/AKT signaling pathway in colon tissues from rats in each of the groups were detected. The PI3 K/AKT signaling pathway in the colon tissue of rats was blocked using the PI3K/AKT signaling pathway inhibitor, LY294002.RESULTS Compared with rats in the control group, rats in the DSS group showed significantly shortened colon lengths, and significantly increased disease activity indices, oxidative stress reactions and inflammatory indices, as well as significantly decreased expression of tight junction-associated proteins. In addition, the DSS group showed significantly increased apoptotic cell numbers,and showed significantly increased M1 macrophages in spleen and colon tissues.They also showed significantly decreased M2 macrophages in colon tissues, as well as activation of the PI3K/AKT signaling pathway(all P < 0.05). Compared with rats in the DSS group, rats in the DSS + PNS group showed significantly lengthened colon lengths, decreased disease activity indices, and significantly alleviated oxidative stress reactions and inflammatory responses. In addition, this group showed significantly increased expression of tight junction-associated proteins, significantly decreased apoptotic cell numbers, and significantly decreased M1 macrophages in spleen and colon tissues. This group further showed significantly increased M2 macrophages in colon tissues, and significantly suppressed activation of the PI3K/AKT signaling pathway, as well as a dose dependency(all P < 0.05). When the PI3K/AKT signaling pathway was inhibited, the apoptosis rate of colon tissue cells in the DSS + LY294002 group was significantly lower than that of the DSS group(P < 0.05).CONCLUSION PNS can protect rats against DSS-induced intestinal inflammatory injury by inhibiting the PI3K/AKT signaling pathway, and therefore may be potentially used in the future as a drug for colitis. 展开更多
关键词 Panax notoginseng SAPONIN phosphoinositide-3-kinase protein kinase b signaling pathway Dextran sulfate sodium COLITIS Rat intestine Protective effect
下载PDF
Effects of small interfering RNA inhibit Class Ⅰ phosphoinositide 3-kinase on human gastric cancer cells 被引量:8
5
作者 Bao-Song Zhu Li-Yan Yu +7 位作者 Kui Zhao Yong-You Wu Xiao-Li Cheng Yong Wu Feng-Yun Zhong Wei Gong Qiang Chen Chun-Gen Xing 《World Journal of Gastroenterology》 SCIE CAS 2013年第11期1760-1769,共10页
AIM:To investigate the effects of small interfering RNA(siRNA)-mediated inhibition of Class Ⅰ phosphoinositide 3-kinase(Class Ⅰ PI3K) signal transduction on the proliferation,apoptosis,and autophagy of gastric cance... AIM:To investigate the effects of small interfering RNA(siRNA)-mediated inhibition of Class Ⅰ phosphoinositide 3-kinase(Class Ⅰ PI3K) signal transduction on the proliferation,apoptosis,and autophagy of gastric cancer SGC7901 and MGC803 cells.METHODS:We constructed the recombinant replication adenovirus PI3K(I)-RNA interference(RNAi)-green fluorescent protein(GFP) and control adenovirus NCRNAi-GFP,and infected it into human gastric cancer cells.MTT assay was used to determine the growth rate of the gastric cancer cells.Activation of autophagy was monitored with monodansylcadaverine(MDC) staining after adenovirus PI3K(I)-RNAi-GFP and control adenovirus NC-RNAi-GFP treatment.Immunofluorescence staining was used to detect the expression of microtubule-associated protein 1 light chain 3(LC3).Mitochondrial membrane potential was measured using the fluorescent probe JC-1.The expression of autophagy was monitored with MDC,LC3 staining,and transmission electron microscopy.Western blotting was used to detect p53,Beclin-1,Bcl-2,and LC3 protein expression in the culture supernatant.RESULTS:The viability of gastric cancer cells was inhibited after siRNA targeting to the Class Ⅰ PI3K blocked Class Ⅰ PI3K signal pathway.MTT assays revealed that,after SGC7901 cancer cells were treated with adenovirus PI3K(I)-RNAi-GFP,the rate of inhibition reached 27.48% ± 2.71% at 24 h,41.92% ± 2.02% at 48 h,and 50.85% ± 0.91% at 72 h.After MGC803 cancer cells were treated with adenovirus PI3K(I)-RNAiGFP,the rate of inhibition reached 24.39% ± 0.93% at 24 h,47.00% ± 0.87% at 48 h,and 70.30% ± 0.86% at 72 h(P < 0.05 compared to control group).It was determined that when 50 MOI,the transfection efficiency was 95% ± 2.4%.Adenovirus PI3K(I)RNAi-GFP(50 MOI) induced mitochondrial dysfunction and activated cell apoptosis in SGC7901 cells,and the results described here prove that RNAi of Class Ⅰ PI3K induced apoptosis in SGC7901 cells.The results showed that adenovirus PI3K(I)-RNAi-GFP transfection induced punctate distribution of LC3 immunoreactivity,indicating increased formation of autophagosomes.The results showed that the basal level of Beclin-1 and LC3 protein in SGC7901 cells was low.After incubating with adenovirus PI3K(I)-RNAi-GFP(50 MOI),Beclin-1,LC3,and p53 protein expression was significantly increased from 24 to 72 h.We also found that Bcl-2 protein expression down-regulated with the treatment of adenovirus PI3K(I)-RNAi-GFP(50 MOI).A number of isolated membranes,possibly derived from ribosomefree endoplasmic reticulum,were seen.These isolated membranes were elongated and curved to engulf a cytoplasmic fraction and organelles.We used transmission electron microscopy to identify ultrastructural changes in SGC7901 cells after adenovirus PI3K(I)RNAi-GFP(50 MOI) treatment.Control cells showed a round shape and contained normal-looking organelles,nucleus,and chromatin,while adenovirus PI3K(I)-RNAiGFP(50 MOI)-treated cells exhibited the typical signs of autophagy.CONCLUSION:After the Class Ⅰ PI3K signaling pathway has been blocked by siRNA,the proliferation of cells was inhibited and the apoptosis of gastric cancer cells was enhanced. 展开更多
关键词 GASTRIC cancer cells Class phosphoinositide 3-kinase RNA interference Apoptosis AUTOPHAGY
下载PDF
Phosphoinositide 3-Kinase/Akt and Nuclear Factor-κB Are Involved in Staphylococcus Aureus-induced Apoptosis in U937 Cells 被引量:6
6
作者 Jia-he Wang Yi-jun Zhoux +2 位作者 Yi-jun Zhou Li Tian Ping He 《Chinese Medical Sciences Journal》 CAS CSCD 2009年第4期231-235,共5页
Objective To explore the mechanisms involved in Staphylococcus aureus(S.aureus) invading human monocytic U937 cells.Methods S.aureus were added to U937 cells at multiplicity of infections(MOI) of 20:1 for 0,15,30,60,a... Objective To explore the mechanisms involved in Staphylococcus aureus(S.aureus) invading human monocytic U937 cells.Methods S.aureus were added to U937 cells at multiplicity of infections(MOI) of 20:1 for 0,15,30,60,and 90 minutes,respectively.Cell apoptosis was analyzed with Hoechst 33258 staining and Annexin V-fluorescein isothiocyanate(FITC)/propidium iodide(PI) flow cytometry analysis.Akt and nuclear factor-κB(NF-κB) activities were detected by Western blotting.Results Infection of U937 cells with S.aureus induced rapid cell death in a time-dependent manner,and the cells displayed characteristic features of apoptosis.S.aureus-induced apoptosis was associated with a prominent downregulation of activated(phosphorylated) Akt and NF-κB.The inhibition of phosphorylated Akt by LY294002 led to the inhibition of NF-κB in a dose-dependent manner.Inhibition of Akt with LY294002 caused further increase in apoptosis of U937 cells.Conclusions S.aureus can stimulate the apoptosis of U937 cells.S.aureus induces apoptosis of U937 cells by inhibiting Akt-regulated NF-κB. 展开更多
关键词 金黄色葡萄球菌 核因子-κb 细胞凋亡 诱导凋亡 磷酸肌醇 异硫氰酸荧光素 U937细胞 葡萄球菌感染
下载PDF
Phosphoinositide-3-kinase,catalytic,alpha polypeptide RNA interference inhibits growth of colon cancer cell SW948 被引量:4
7
作者 Wen-Sheng Huang Tian-Bao Wang +3 位作者 Yao He Yu-Jun Chen Shi-Long Zhong Min Tan 《World Journal of Gastroenterology》 SCIE CAS CSCD 2012年第26期3458-3464,共7页
AIM:To investigate the gene knock-down effect by the phosphoinositide-3-kinase,catalytic,alpha polypeptide(PIK3CA)-targeted double-stranded RNA(dsRNA) and its effect on cell proliferation and cycle distribution in SW9... AIM:To investigate the gene knock-down effect by the phosphoinositide-3-kinase,catalytic,alpha polypeptide(PIK3CA)-targeted double-stranded RNA(dsRNA) and its effect on cell proliferation and cycle distribution in SW948.METHODS:Two PIK3CA-targeted dsRNAs were constructed and transfected into SW948 cells.Transfections were performed using lipofectamine TM 2000.The transfection effectiveness was calculated basing on the rate of fluorescence cell of SW948 at 6 h after transfection.Total messenger RNA was extracted from these cells using the RNeasy kit,and semiquantitative reverse transcription polymerase chain reaction was performed to detect the down-regulation of PIK3CA,AKT1,MYC,and CCND1 gene expression.Cells were harvested,proteins were resolved,and western blot was employed to detect the expression levels of PIK3CA,AKT1,MYC,and CCND1 gene.Cell proliferation was assessed by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide assay and the inhibition rate was calculated.Soft agar colony formation assay was performed basing on colonies greater than 60 μm in diameter at ×100 magnification.The effect on cell cycle distribution and apoptosis was assessed by flow cytometry.All experiments were performed in triplicate.RESULTS:Green fluorescence was observed in SW948 cell transfected with plasmid Pgenesil-1,and the transfection effectiveness was about 65%.Forty-eight hours post-transfection,mRNA expression of PIK3CA in SW948 cells was 0.51 ± 0.04 vs 0.49 ± 0.03 vs 0.92 ± 0.01 vs 0.93 ± 0.03(P = 0.001) in Pgenesil-CA1,Pgenesil-CA2,negative and blank group respectively.mRNA expression of AKT1 was 0.50 ± 0.03 vs 0.48 ± 0.01 vs 0.93 ± 0.04 vs 0.92 ± 0.02(P = 0.000) in Pgenesil-CA1,Pgenesil-CA2,negative and blank group respectively.mRNA expression of MYC was 0.49 ± 0.01 vs 0.50 ± 0.04 vs 0.90 ± 0.02 vs 0.91 ± 0.03(P = 0.001) in the four groups respectively.mRNA expression of CCND1 was 0.45 ± 0.02 vs 0.51 ± 0.01 vs 0.96 ± 0.03 vs 0.98 ± 0.01(P = 0.001) in the four groups respectively.The protein level of PIK3CA was 0.53 ± 0.01 vs 0.54 ± 0.02 vs 0.92 ± 0.03 vs 0.91 ± 0.02(P = 0.001) in Pgenesil-CA1,Pgenesil-CA2,negative and blank group respectively.The protein level of AKT1 in the four groups was 0.49 ± 0.02 vs 0.55 ± 0.03 vs 0.94 ± 0.03 vs 0.95 ± 0.04,P = 0.000).The protein level of MYC in the four groups was 0.51 ± 0.03 vs 0.52 ± 0.04 vs 0.92 ± 0.02 vs 0.95 ± 0.01(P = 0.000).The protein level of CCND1 in the four groups was 0.54 ± 0.04 vs 0.56 ± 0.03 vs 0.93 ± 0.01 vs 0.93 ± 0.03(P = 0.000).Both Pgenesil-CA1 and Pgenesil-CA2 plasmids significantly suppressed the growth of SW948 cells when compared with the negative or blank group at 48 h after transfec-tion(29% vs 25% vs 17% vs 14%,P = 0.001),60 h after transfection(38% vs 34% vs 19% vs 16%,P = 0.001),and 72 h after transfection(53% vs 48% vs 20% vs 17%,P = 0.000).Numbers of colonies in negative,blank,CA1,and CA2 groups were 42 ± 4,45 ± 5,8 ± 2,and 10 ± 3,respectively(P = 0.000).There were more than 4.5 times colonies in the blank and negative control groups as there were in the CA1 and CA2 groups.In addition,the colonies in blank and negative control groups were also larger than those in the CA1 and CA2 groups.The percentage of cells in the CA1 and CA2 groups was significantly higher in G 0 /G 1 phase,but lower in S and G 2 /M phase when compared with the negative and control groups.Moreover,cell apoptosis rates in the CA1 and CA2 groups were 5.11 ± 0.32 and 4.73 ± 0.32,which were significantly higher than those in negative(0.95 ± 0.11,P = 0.000) and blank groups(0.86 ± 0.13,P = 0.001).No significant difference was found between CA1 and CA2 groups in cell cycle distribution and apoptosis.CONCLUSION:PIK3CA-targeted short hairpin RNAs can block the phosphoinositide 3-kinase-Akt signaling pathway and inhibit cell growth,increase apoptosis,and induce cell cycle arrest in the PIK3CA-mutant colon cancer SW948 cells. 展开更多
关键词 RNA干扰 磷酸肌醇 癌细胞 催化性 结肠癌 激酶 抑制生长 半定量逆转录聚合酶链反应
下载PDF
Suppressing high mobility group box-1 release alleviates morphine tolerance via the adenosine5'-monophosphate-activated protein kinase/heme oxygenase-1 pathway
8
作者 Tong-Tong Lin Chun-Yi Jiang +10 位作者 Lei Sheng Li Wan Wen Fan Jin-Can Li Xiao-Di Sun Chen-Jie Xu Liang Hu Xue-Feng Wu Yuan Han Wen-Tao Liu Yin-Bing Pan 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第9期2067-2074,共8页
Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory p... Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory pain,but its role in morphine tolerance is unclear.In this study,we established rat and mouse models of morphine tolerance by intrathecal injection of morphine for 7 consecutive days.We found that morphine induced rat spinal cord neurons to release a large amount of HMGB1.HMGB1 regulated nuclear factor κB p65 phosphorylation and interleukin-1β production by increasing Toll-like receptor 4receptor expression in microglia,thereby inducing morphine tolerance.Glycyrrhizin,an HMGB1 inhibito r,markedly attenuated chronic morphine tole rance in the mouse model.Finally,compound C(adenosine 5’-monophosphate-activated protein kinase inhibitor) and zinc protoporphyrin(heme oxygenase-1 inhibitor)alleviated the morphine-induced release of HMGB1 and reduced nuclear factor κB p65 phosphorylation and interleukin-1β production in a mouse model of morphine tolerance and an SH-SY5Y cell model of morphine tole rance,and alleviated morphine tolerance in the mouse model.These findings suggest that morphine induces HMGB1 release via the adenosine 5’-monophosphate-activated protein kinase/heme oxygenase-1 signaling pathway,and that inhibiting this signaling pathway can effectively reduce morphine tole rance. 展开更多
关键词 adenosine 5’-monophosphate-activated protein kinase heme oxygenase-1 high mobility group box-1 INTERLEUKIN-1Β MICROGLIA morphine tolerance NEUROINFLAMMATION neuron nuclear factor-κb p65 Toll-like receptor 4
下载PDF
Multiple implications of 3-phosphoinositide-dependent protein kinase 1 in human cancer 被引量:1
9
作者 Keum-Jin Yang Jongsun Park 《World Journal of Biological Chemistry》 CAS 2010年第8期239-247,共9页
3-phosphoinositide-dependent protein kinase-1(PDK1) is a central mediator of cellular signaling between phosphoinositide-3 kinase and various intracellular serine/threonine kinases,including protein kinase B,p70 ribos... 3-phosphoinositide-dependent protein kinase-1(PDK1) is a central mediator of cellular signaling between phosphoinositide-3 kinase and various intracellular serine/threonine kinases,including protein kinase B,p70 ribosomal S6 kinase,serum and glucocorticoid-inducible kinase,and protein kinase C.PDK1 activates members of the AGC family of protein kinases by phosphorylating serine/threonine residues in the activation loop.Here,we review the regulatory mechanisms of PDK1 and its roles in cancer.PDK1 is activated by autophosphorylation in the activation loop and other serine residues,as well as by phosphorylation of Tyr-9 and Tyr-373/376.Src appears to recognize PDK1 following tyrosine phosphorylation.The role of heat shock protein 90 in regulating PDK1 stability and PDK1-Src complex formation are also discussed.Furthermore,we summarize the subcellular distribution of PDK1.Finally,an important role for PDK1 in cancer chemotherapy is proposed.In conclusion,a better understanding of its molecular regulatory mechanisms in various signaling pathways will help to explain how PDK1 acts as an oncogenic kinase in various cancers,and will contribute to the development of novel cancer chemotherapies. 展开更多
关键词 3-phosphoinositide-dependent protein kinase-1 protein kinase b Oncogenic kinase Cell SIGNALING Cancer therapy
下载PDF
The cardioprotection induced by lipopolysaccharide involves phosphoinositide 3-kinase/Akt and high mobility group box 1 pathways
10
作者 Xiang Liu Yijiang Chen +2 位作者 Yanhu Wu Tuanzhu Ha Chuanfu Li 《The Journal of Biomedical Research》 CAS 2010年第4期324-331,共8页
Objective: The mechanisms by which lipopolysaccharide (LPS) pretreatment induces cardioprotection following ischaemia/reperfusion (I/R) have not been fully elucidated. We hypothesized that activation of phosphoin... Objective: The mechanisms by which lipopolysaccharide (LPS) pretreatment induces cardioprotection following ischaemia/reperfusion (I/R) have not been fully elucidated. We hypothesized that activation of phosphoinositide 3-kinase (PI3K)/Akt and high mobility group box 1 (HMGBxl) signaling plays an important role in LPS-induced cardioprotection. Methods: In in vivo experiments, age- and weight- matched male C57BL/10Sc wild type mice were pretreated with LPS before ligation of the left anterior descending coronary followed by reperfusion. Infarction size was examined by triphenyltetrazolium chloride (TTC) staining. Akt, phospho-Akt, and HMGBxl were assessed by immunoblotting with appropriate primary antibodies. In situ cardiac myocyte apop- tosis was examined by the TdT-mediated dUTP nick-end labeling (TUNEL) assay. In an in vitro study, rat cardiac myoblasts (H9c2) were subdivided into two groups, and only one was pretreated with LPS. After pretreatment, the cells were transferred into a hypoxic chamber under 0.5% 02. Levels of HMGBxl were assessed by immunoblot. Results: In the in vivo experiment, pretreatment with LPS reduced the at risk infarct size by 70.6% and the left ventricle infarct size by 64.93% respectively. Pretreatment with LPS also reduced cardiac myocytes apoptosis by 39.1% after ischemia and reperfusion. The mechanisms of LPS induced cardioprotection involved increasing PI3K/Akt activity and decreasing expression of HMGBxl. In the in vitro study, pretreatment with LPS reduced the level of HMGBxl in H9c2 cell cytoplasm following hypoxia. Conclusion: The results suggest that the cardioprotection following I/R induced by LPS pretreatment involves PI3K/Akt and HMGBxl pathways. 展开更多
关键词 myocardial ischemia/reperfusion phosphoinositide 3-kinase/Akt signaling PRECONDITIONING highmobility group box 1 LIPOPOLYSACCHARIDE
下载PDF
Neuroprotective mechanisms of rutin for spinal cord injury through anti-oxidation and anti-inflammation and inhibition of p38 mitogen activated protein kinase pathway 被引量:9
11
作者 Hong-liang Song Xiang Zhang +5 位作者 Wen-zhao Wang Rong-han Liu Kai Zhao Ming-yuan Liu Wei-ming Gong Bin Ning 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第1期128-134,共7页
Rutin has anti-inflammatory, antioxidant, anti-viral, anti-tumor and immune regulatory effects. However, the neuroprotective effects of rutin in spinal cord injury are unknown. The p38 mitogen activated protein kinase... Rutin has anti-inflammatory, antioxidant, anti-viral, anti-tumor and immune regulatory effects. However, the neuroprotective effects of rutin in spinal cord injury are unknown. The p38 mitogen activated protein kinase (p38 MAPK) pathway is the most important member of the MAPK family that controls inflammation. We assumed that the mechanism of rutin in the repair of spinal cord injury is associated with the inhibition of p38 MAPK pathway. Allen’s method was used to establish a rat model of spinal cord injury. The rat model was intraperitoneally injected with rutin (30 mg/kg) for 3 days. After treatment with rutin, Basso, Beattie and Bresnahan locomotor function scores increased. Water content, tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 levels, p38 MAPK protein expression and caspase-3 and -9 activities in T8–9 spinal cord decreased. Oxidative stress related markers superoxide dismutase and glutathione peroxidase levels increased in peripheral blood. Rutin exerts neuroprotective effect through anti-oxidation, anti-inflammation, anti-apoptosis and inhibition of p38 MAPK pathway. 展开更多
关键词 nerve regeneration spinal cord injury RUTIN oxidative stress antioxidant ANTI-INFLAMMATION p38 mitogen activated protein kinase pathway ANTI-APOPTOSIS caspase-3 caspase-9 neural regeneration
下载PDF
Role of phosphoinositide 3-kinase in the pathogenesis of acute pancreatitis 被引量:15
12
作者 Enrico Lupia Luca Pigozzi +2 位作者 Alberto Goffi Emilio Hirsch Giuseppe Montrucchio 《World Journal of Gastroenterology》 SCIE CAS 2014年第41期15190-15199,共10页
A large body of experimental and clinical data supports the notion that inflammation in acute pancreatitis has a crucial role in the pathogenesis of local and systemic damage and is a major determinant of clinical sev... A large body of experimental and clinical data supports the notion that inflammation in acute pancreatitis has a crucial role in the pathogenesis of local and systemic damage and is a major determinant of clinical severity.Thus,research has recently focused on molecules that can regulate the inflammatory processes,such as phosphoinositide 3-kinases(PI3Ks),a family of lipid and protein kinases involved in intracellular signal transduction.Studies using genetic ablation or pharmacologic inhibitors of different PI3 K isoforms,in particular the class I PI3Kδ and PI3Kγ,have contributed to a greater understanding of the roles of these kinases in the modulation of inflammatory and immune responses.Recent data suggest that PI3 Ks are also involved in the pathogenesis of acute pancreatitis.Activation of the PI3K signaling pathway,and in particular of the class IB PI3Kγ isoform,has a significant role in those events which are necessary for the initiation of acute pancreatic injury,namely calcium signaling alteration,trypsinogen activation,and nuclear factor-κB transcription.Moreover,PI3Kγ is instrumental in modulating acinar cell apoptosis,and regulating local neutrophil infiltration and systemic inflammatory responses during the course of experimental acute pancreatitis.The availability of PI3 K inhibitors selective for specific isoforms may provide new valuable therapeutic strategies to improve the clinical course of this disease.This article presents a brief summary of PI3 K structure and function,and highlights recent advances that implicate PI3 Ks in the pathogenesis of acute pancreatitis. 展开更多
关键词 phosphoinositide 3-kinase CELL SIGNALING Inflammat
下载PDF
Micro RNA-21 promotes phosphatase gene and protein kinase B/phosphatidylinositol 3-kinase expression in colorectal cancer 被引量:2
13
作者 Wei-Zhong Sheng Yu-Sheng Chen +3 位作者 Chuan-Tao Tu Juan He Bo Zhang Wei-Dong Gao 《World Journal of Gastroenterology》 SCIE CAS 2016年第24期5532-5539,共8页
AIM: To explore the regulatory mechanism of the target gene of micro RNA-21(mi R-21), phosphatase gene(p TEN), and its downstream proteins, protein kinase B(AKT) and phosphatidylinositol 3-kinase(p I3K), in colorectal... AIM: To explore the regulatory mechanism of the target gene of micro RNA-21(mi R-21), phosphatase gene(p TEN), and its downstream proteins, protein kinase B(AKT) and phosphatidylinositol 3-kinase(p I3K), in colorectal cancer(CRC) cells. METHODS: Quantitative real-time p CR(q RT-p CR) and Western blot were used to detect the expression levels of mi R-21 and p TEN in HCT116, HT29, Colo32 and SW480 CRC cell lines. Also, the expression levels of p TEN m RNA and its downstream proteins AKT and p I3 K in HCT116 cells after downregulating mi R-21 were investigated. RESULTS: Comparing the mi R-21 expression in CRC cells, the expression levels of mi R-21 were highest in HCT116 cells, and the expression levels of mi R-21 were lowest in SW480 cells. In comparing mi R-21 and p TEN expression in CRC cells, we found that the protein expression levels of mi R-21 and p TEN were inversely correlated(p < 0.05); when mi R-21 expression was reduced, m RNA expression levels of p TEN did not significantly change(p > 0.05), but the expression levels of its protein significantly increased(p < 0.05). In comparing the levels of p TEN protein and downstream AKT and p I3 K in HCT116 cells after downregulation of mi R-21 expression, the levels of AKT and p I3 K protein expression significantly decreased(p < 0.05). CONCLUSION: p TEN is one of the direct target genesof mi R-21. Thus, phosphatase gene and its downstream AKT and p I3 K expression levels can be regulated by regulating the expression levels of mi R-21, which in turn regulates the development of CRC. 展开更多
关键词 Micro RNA-21 protein kinase b COLORECTAL cancer PHOSPHATIDYLINOSITOL 3-kinase PHOSPHATASE and TENSIN
下载PDF
The calmodulin-dependent protein kinase II inhibitor KN-93 protects rat cerebral cortical neurons from N-methyl-D-aspartic acid-induced injury 被引量:3
14
作者 Xuewen Liu Cui Ma +5 位作者 Ruixian Xing Weiwei Zhang Buxian Tian Xidong Li Qiushi Li Yanhui Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第2期111-120,共10页
In this study, primary cultured cerebral cortical neurons of Sprague-Dawley neonatal rats were treated with 0.25, 0.5, and 1.0 μM calmodulin-dependent protein kinase II inhibitor KN-93 after 50 μM N-methyI-D-asparti... In this study, primary cultured cerebral cortical neurons of Sprague-Dawley neonatal rats were treated with 0.25, 0.5, and 1.0 μM calmodulin-dependent protein kinase II inhibitor KN-93 after 50 μM N-methyI-D-aspartic acid-induced injury. Results showed that, compared with N-methyi-D- aspartic acid-induced injury neurons, the activity of cells markedly increased, apoptosis was significantly reduced, leakage of lactate dehydrogenase decreased, and intracellular Ca2+ concentrations in neurons reduced after KN-93 treatment. The expression of caspase-3, phosphorylated calmodulin-dependent protein kinase II and total calmodulin-dependent protein kinase II protein decreased after KN-93 treatment. And the effect was apparent at a dose of 1.0 pM KN-93. Experimental findings suggest that KN-93 can induce a dose-dependent neuroprotective effect, and that the underlying mechanism may be related to the down-regulation of caspase-3 and calmodulin- dependent protein kinase II expression. 展开更多
关键词 neural regeneration brain injury calmodulin-dependent protein kinase II KN-93 N-methyi-D-aspartic acid caspase-3 calcium ion apoptosis NEUROPROTECTION grant-supported paper photographs-containing paper NEUROREGENERATION
下载PDF
Cytotoxicity of nonylphenol on spermatogonial stem cells via phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin pathway 被引量:3
15
作者 Jun-Hao Lei Wen Yan +4 位作者 Chun-Hua Luo Yu-Ming Guo Yang-Yang Zhang Xing-Huan Wang Xin-Jun Su 《World Journal of Stem Cells》 SCIE CAS 2020年第6期500-513,共14页
BACKGROUND With continuous advancement of industrial society,environmental pollution has become more and more serious.There has been an increase in infertility caused by environmental factors.Nonylphenol(NP)is a stabl... BACKGROUND With continuous advancement of industrial society,environmental pollution has become more and more serious.There has been an increase in infertility caused by environmental factors.Nonylphenol(NP)is a stable degradation product widely used in daily life and production and has been proven to affect male fertility.However,the underlying mechanisms therein are unclear.Thus,it is necessary to study the effect and mechanism of NP on spermatogonial stem cells(SSCs).AIM To investigate the cytotoxic effect of NP on SSCs via the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/AKT/mTOR)pathway.METHODS SSCs were treated with NP at 0,10,20 or 30μmol.MTT assay was performed to evaluate the effect of NP on the proliferation of SSCs.Flow cytometry was conducted to measure SSC apoptosis.The expression of Bad,Bcl-2,cytochrome-c,pro-Caspase 9,SOX-2,OCT-4,Nanog,Nanos3,Stra8,Scp3,GFRα1,CD90,VASA,Nanos2,KIT,PLZF and PI3K/AKT/mTOR-related proteins was observed by western blot,and the mRNA expression of SOX-2,OCT-4 and Nanog was detected by quantitative reverse transcription polymerase chain reaction.RESULTS Compared with untreated cells(0μmol NP),SSCs treated with NP at all concentrations showed a decrease in cell proliferation and expression of Bcl-2,Nanog,OCT-4,SOX-2,Nanos3,Stra8,Scp3,GFRα1,CD90,VASA,Nanos2,KIT,and PLZF(P<0.05),whereas the expression of Bad,cytochrome-c,and pro-Caspase 9 increased significantly(P<0.05).We further examined the PI3K/AKT/mTOR pathway and found that the phosphorylation of PI3K,AKT,mTORC1,and S6K was significantly decreased by NP at all concentrations compared to that in untreated SSCs(P<0.05).NP exerted the greatest effect at 30μmol among all NP concentrations.CONCLUSION NP attenuated the proliferation,differentiation and stemness maintenance of SSCs while promoting apoptosis and oxidative stress.The associated mechanism may be related to the PI3K/AKT/mTOR pathway. 展开更多
关键词 Spermatogonial stem cells NONYLPHENOL CYTOTOXICITY Phosphatidylinositol-3-kinase protein kinase b Mammalian target of rapamycin
下载PDF
Hippocampal activation of c-Jun N-terminal kinase,protein kinase B,and p38 mitogen-activated protein kinase in a chronic stress rat model of depression 被引量:1
16
作者 Wei Dai Weidong Li +2 位作者 Jun Lu Yingge A Ya Tu 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第19期1486-1490,共5页
Recent studies have shown that varied stress stimuli activate c-Jun N-terminal kinase (JNK), protein kinase B (Akt), and p38 mitogen-activated protein kinase (p38) signal transduction pathway, and also regulate ... Recent studies have shown that varied stress stimuli activate c-Jun N-terminal kinase (JNK), protein kinase B (Akt), and p38 mitogen-activated protein kinase (p38) signal transduction pathway, and also regulate various apoptotic cascades. JNK and p38 promote apoptosis, but Akt protects against apoptosis, in hippocampal neurons. However, changes in the transduction pathway in different regions of brain tissues in a chronic stress rat model of depression remain poorly understood. Results from this study showed that JNK phosphorylation levels were significantly greater in the stress group hippocampus compared with the control group (P 〈 0.05). No significant difference in JNK phosphorylation levels was detected in the rat cerebral cortex between stress and control groups, and no significant difference in Akt and p38 phosphorylation levels was detected in the rat hippocampus and cerebral cortex between stress and control groups (P 〉 0.05). These results suggested that the JNK signal pathway is activated by JNK phosphorylation and participates in pathophysiological changes in rat models of depression. 展开更多
关键词 DEPRESSION chronic stress PHOSPHORYLATION stress-activated protein kinase protein kinase b p38 mitogen-activated protein kinase neural regeneration
下载PDF
Telencephalin protects PAJU cells from amyloid beta protein-induced apoptosis by activating the ezrin/radixin/moesin protein family/phosphatidylinositol-3-kinase/protein kinase B pathway
17
作者 Heping Yang Dapeng Wu +3 位作者 Xiaojie Zhang Xiang Wang Yi Peng Zhiping Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第28期2189-2198,共10页
Telencephalin is a neural glycoprotein that reduces apoptosis induced by amyloid beta protein in the human neural tumor cell line PAJU. In this study, we examined the role of the ezrin/radixin/moesin protein family/ph... Telencephalin is a neural glycoprotein that reduces apoptosis induced by amyloid beta protein in the human neural tumor cell line PAJU. In this study, we examined the role of the ezrin/radixin/moesin protein family/phosphatidylinositol-3-kinase/protein kinase B pathway in this process. Western blot analysis demonstrated that telencephalin, phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B were not expressed in PAJU cells transfected with empty plasmid, while they were expressed in PAJU cells transfected with a telencephalin expression plasmid. After treatment with 1.0 nM amyloid beta protein 42, expression of telencephalin and phosphorylated phosphatidylinositol-3-kinase/protein kinase B in the transfected cells gradually diminished, while levels of phosphorylated ezrin/radixin/moesin increased. In addition, the high levels of telencephalin, phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B expression in PAJU cells transfected with a telencephalin expression plasmid could be suppressed by the phosphatidylinositol-3-kinase inhibitor LY294002. These findings indicate that telencephalin activates the ezrin/radixin/moesin family/phosphatidylinositol-3-kinase/protein kinase B pathway and protects PAJU cells from amyloid beta protein-induced apoptosis. 展开更多
关键词 telencephalin/intercellular adhesion molecule 5 amyloid beta protein ezrin/radixin/moesin familyproteins/phosphatidylinositol-3-kinase/protein kinase b signal transduction neural regeneration
下载PDF
INHIBITION OF IL-6-INDUCED STAT3 ACTIVATION IN MYELOMA CELLS BY PROTEIN KINASE A
18
作者 宋伦 黎燕 沈倍奋 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2001年第4期243-246,共4页
Objective: To investigate the regulation effect of protein kinase A on IL-6-induced STAT3 activation in myeloma cells. Methods: Two human myeloma cell lines-Sko-007 and U266 were pretreated with Forskolin, a protein k... Objective: To investigate the regulation effect of protein kinase A on IL-6-induced STAT3 activation in myeloma cells. Methods: Two human myeloma cell lines-Sko-007 and U266 were pretreated with Forskolin, a protein kinase A antagonist, and then stimulated by IL-6. The activation state of STAT3 in these two cells were examined by electrophoretic mobility shift assay (EMSA). Results: Although PKA pathway itself doesn’t participate in IL-6 signal transduction in Sko-007 and U266 cells, activation of protein kinase A can inhibit IL-6-induced STAT3 activation in these two cell lines. Conclusion: There exists an inhibitory effect of protein kinase A on STAT3 activation in human myeloma cells treated by IL-6. 展开更多
关键词 IL-6 Signal transduction STAT3 protein kinase A
下载PDF
Phosphoinositide 3-kinase dependent modulation of morphine versus cocaine dependence involves activation of nischarin
19
作者 LI Shuo WANG Zhi-yuan +1 位作者 LI Fei LI Jin 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2018年第9期717-718,共2页
OBJECTIVE Phosphoinositide 3-kinase(PI3K) activation was reported to participate in the development of effect of some drugs,such as morphine and cocaine dependence.We previous found nischarin is associated with the ac... OBJECTIVE Phosphoinositide 3-kinase(PI3K) activation was reported to participate in the development of effect of some drugs,such as morphine and cocaine dependence.We previous found nischarin is associated with the activation of PI3K.It is our great interest to investigate the involvement of nischarin in PI3K dependent modulation of morphine versus cocaine dependence.METHODS In order to study the role of nischarin in drug dependence and tolerance,nischarin knockout mice were used for our research.Effect of psychological dependence was studied by conditioned place preference(CPP),and the effect of physical dependence was tested by naloxone-precipitated withdrawal signs.Some brain tissues were harvested 24 h after the behavioral experiment for the further measurement.RESULTS PI3K specific inhibitor LY294002 significantly blocked the acquisition of morphine-induced CPP in wild-type mice,but had no effect on its expression.In comparison,LY294002 failed to block the acquisition of cocaine-induced CPP but inhibited the expression.Furthermore,we found naloxoneprecipitated withdrawal signs in the morphine dependent mice was inhibited by LY294002.Nischarin knockout in mice could abolish the effect of LY294002 on blocking the effects of morphine,but had no effect on cocaine.CONCLUSION PI3K activation is involved in the different phases of morphine and cocaine dependence,and nischarin plays an important role in the process. 展开更多
关键词 MORPHINE COCAINE phosphoinositide 3-kinase
下载PDF
Response of Subcutaneous Xenografts of Endometrial Cancer in Nude Mice to Inhibitors of Phosphatidylinositol 3-Kinase/Akt and Mitogen-Activated Protein Kinase (MAPK) Pathways: An Effective Therapeutic Strategy for Endometrial Cancer
20
作者 Ruixia Guo Xinyan Wang +6 位作者 Ruifang Zhang Huirong Shi Yuhuan Qiao Wenjing Yun Xin Ge Yan Lin Jia Lei 《Journal of Cancer Therapy》 2015年第12期1083-1092,共10页
Objective: This study was designed to explore whether inhibition of the extracellular-regulated kinase (ERK) and phosphatidylinositol-3-kinase (PI3K) signaling pathways can inhibit the growth of xenografts of endometr... Objective: This study was designed to explore whether inhibition of the extracellular-regulated kinase (ERK) and phosphatidylinositol-3-kinase (PI3K) signaling pathways can inhibit the growth of xenografts of endometrial cancer cell lines with different estrogen receptors (ER) profiles in vivo and to provide preliminary laboratory basis for the probability of endometrial adenocarcinoma treatment with blockage of the two pathways, especially to endometrial cancer with low ER status. Methods: Human endometrial cancer Ishikawa bearing ER and HEC-1Awith low ER status cells were subcutaneously injected into BALB/c nude mice to establish endometrial cancer xenograft tumor models. The effects of PI3K/Akt inhibitor LY294002, MAPK/ERK1/2 inhibitor PD-98059 and their combinations on the growth of the xenograft tumors and apoptotic state of Ishikawa and HEC-1Acells were tested in vivo using the inhibitory rate, the terminal deoxynucleotidyl transferase-mediated nick-end labeling assay, H/E-stain. Western blot analysis was used to detect the alterations of activated ERK (P-ERK) and AKT (P-AKT) during this process. Results: LY294002, a PI3K/Akt pathway inhibitor, induced significant suppression in the growth of both Ishikawa and HEC-1Acell xenograft tumors, concomitant with increased apoptosis in xenografts as evidenced by TUNEL. A similar effect was also observed when the MAPK/ERK1/2 signaling pathway was inhibited by PD98059. Concurrent inhibition of the PI3K/Akt and MAPK/ERK1/2 pathways showed enhanced anti-tumor effects in vivo as indicated by increased apoptosis. At the same time, the levels of P-ERK and P-AKT in both xenograft tumors decreased, and their levels in combination group was the lowest. Conclusions: PD98059, LY294002 and their combinations showed remarkable inhibitory effects on xenograft tumors of endometrial carcinoma cell lines with different expression status of ER in vivo through blockage of PI3K/Akt and MAPK/ERK1/2 signaling pathways. This suggests that targeting these pathways may be an effective therapeutic strategy against endometrial carcinomas, especially for ER-negative cancers which show poor response to endocrinal therapy. 展开更多
关键词 Extracellular-Regulated kinase (ERK) PROTO-ONCOGENE proteins AKT ERK PATHWAY INHIbITOR PD98059 Phosphatidylinositol-3-kinase PATHWAY INHIbITOR LY294002 Endometrial Cancer Cell Estrogen Receptor
下载PDF
上一页 1 2 168 下一页 到第
使用帮助 返回顶部