Objective:To investigate the effects of stilbene glycoside(TSG)on okadaic acid-induced apoptosis in human neuroblastoma cells(SH-SY5Y)via the PI3K/AKT pathway.Methods:The optimal concentration of OA was screened by CC...Objective:To investigate the effects of stilbene glycoside(TSG)on okadaic acid-induced apoptosis in human neuroblastoma cells(SH-SY5Y)via the PI3K/AKT pathway.Methods:The optimal concentration of OA was screened by CCK-8 assay,and SH-SY5Y cells were divided into control group,model group,TSG group,LY294002 group and LY294002+TSG group.The proliferation and apoptosis in each group were detected by CCK-8 and TUNEL assays;Western blotting method and real-time fluorescence quantitative polymerase chain reaction was used to detect the expression of PI3K,P-PI3K(Y607),AKT,P-AKT(Ser473),Bcl-2 and Bax proteins.The relative protein expression was represented by P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax gray ratio.Results:CCK-8 screened the optimal concentration of OA as 40 nmol/L.Compared with the control group,the model group increased relative cell viability,decreased apoptosis rate,the pathway and apoptotic proteins expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax were decreased,and the mRNA expression levels of PI3K,AKT and Bcl-2 were decreased.Bax mRNA expression level increased(P<0.05);Compared with model group,TSG group increased relative cell viability,decreased apoptosis rate,increased protein expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT,Bcl-2/Bax,and increased mRNA expression levels of PI3K,AKT,and Bcl-2.Bax mRNA expression decreased(P<0.05),LY294002 group decreased relative cell viability,increased apoptosis rate,P-PI3K(Y607)/PI3K protein expression levels were significantly decreased(P<0.05),P-AKT(Ser473)/AKT and Bcl-2/Bax protein expression levels were significantly decreased,but there was no statistical significance,PI3K,AKT and Bcl-2 mRNA expression levels were decreased,and Bax mRNA expression levels were increased(all P<0.05);Compared with LY294002 group,LY294002+TSG group increased relative cell viability,decreased apoptosis rate,and the protein expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax were increased.The mRNA expression levels of PI3K,AKT,Bcl-2 were increased,Bax was decreased(all P<0.05).Conclusion:Stilbene glycoside may alleviate okadaic acid-induced apoptosis in SH-SY5Y cells by interfering with the PI3K/AKT signaling pathway,which in turn regulates the expression of apoptotic factors such as Bcl-2 and Bax.展开更多
Much research has focused on the PI3-kinase and PTEN signaling pathway with the aim to stimulate repair of the injured central nervous system.Axons in the central nervous system fail to regenerate,meaning that injurie...Much research has focused on the PI3-kinase and PTEN signaling pathway with the aim to stimulate repair of the injured central nervous system.Axons in the central nervous system fail to regenerate,meaning that injuries or diseases that cause loss of axonal connectivity have life-changing consequences.In 2008,genetic deletion of PTEN was identified as a means of stimulating robust regeneration in the optic nerve.PTEN is a phosphatase that opposes the actions of PI3-kinase,a family of enzymes that function to generate the membrane phospholipid PIP_(3) from PIP_(2)(phosphatidylinositol(3,4,5)-trisphosphate from phosphatidylinositol(4,5)-bisphosphate).Deletion of PTEN therefore allows elevated signaling downstream of PI3-kinase,and was initially demonstrated to promote axon regeneration by signaling through mTOR.More recently,additional mechanisms have been identified that contribute to the neuron-intrinsic control of regenerative ability.This review describes neuronal signaling pathways downstream of PI3-kinase and PIP3,and considers them in relation to both developmental and regenerative axon growth.We briefly discuss the key neuron-intrinsic mechanisms that govern regenerative ability,and describe how these are affected by signaling through PI3-kinase.We highlight the recent finding of a developmental decline in the generation of PIP_(3) as a key reason for regenerative failure,and summarize the studies that target an increase in signaling downstream of PI3-kinase to facilitate regeneration in the adult central nervous system.Finally,we discuss obstacles that remain to be overcome in order to generate a robust strategy for repairing the injured central nervous system through manipulation of PI3-kinase signaling.展开更多
Activation of the phosphoinositide 3 kinase(PI3K)/Akt/mammalian target of rapamycin(mTOR) pathway is common in breast cancer. There is preclinical data to support inhibition of the pathway, and phase Ⅰ to Ⅲ trials i...Activation of the phosphoinositide 3 kinase(PI3K)/Akt/mammalian target of rapamycin(mTOR) pathway is common in breast cancer. There is preclinical data to support inhibition of the pathway, and phase Ⅰ to Ⅲ trials involving inhibitors of the pathway have been or are being conducted in solid tumors and breast cancer. Everolimus, an mTOR inhibitor, is currently approved for the treatment of hormone receptor(HR)-positive, human epidermal growth factor receptor 2(HER2)-negative breast cancer. In this review, we summarise the efficacy and toxicity findings from the randomised clinical trials, with simplified guidelines on the management of potential adverse effects. Education of healthcare professionals and patients is critical for safety and compliance. While there is some clinical evidence of activity of mTOR inhibition in HR-positive and HER2-positive breast cancers, the benefits may be more pronounced in selected subsets rather than in the overall population. Further development of predictive biomarkers will be useful in the selection of patients who will benefit from inhibition of the PI3K/Akt/mTOR(PAM) pathway.展开更多
Our recent studies with cultured retinal pigment epithelium cells suggested that overexpression of interleukin 17 receptor C(IL-17RC),a phenomenon observed in peripheral blood and chorioretinal tissues with age-rela...Our recent studies with cultured retinal pigment epithelium cells suggested that overexpression of interleukin 17 receptor C(IL-17RC),a phenomenon observed in peripheral blood and chorioretinal tissues with age-related macular degeneration(AMD),was associated with altered activation of phosphatidylinositide 3-kinase(PI3K),Akt,and glycogen synthase kinase 3(GSK3).We wondered whether or not altered PI3 K,Akt,and GSK3 activities could be detected in peripheral blood mononuclear cells(PBMC) obtained from AMD patients.In the patients' PBMC,absent or reduced serine-phosphorylation of GSK3α or GSK3β was observed,which was accompanied with increased phosphorylation of GSK3 substrates(e.g.CCAAT enhancer binding protein a,insulin receptor substrate 1,and TAU),indicative of enhanced GSK3 activation.In addition,decreased protein mass of PI3K85α and tyrosinephosphorylation of PI3K50α was present in PBMC of the AMD patients,suggesting impaired PI3 K activation.Moreover,abnormally lowered molecular weight forms of Akt and GSK3 were detected in PBMC of the AMD patients.These data demonstrate that despite the presence of high levels of IL-17 RC,Wnt-3a and vascular endothelial growth factor,the PI3K/Akt/GSK3 signaling pathway is insensitive to these stimuli in PBMC of the AMD patients.Thus,measurement of PI3K/Akt/GSK3 expression and activity in PBMC may serve as a surrogate biomarker for AMD.展开更多
Objective: To investigate the effects of CAL-101, particularly when combined with bortezomib(BTZ) on mantle cell lymphoma(MCL) cells, and to explore its relative mechanisms.Methods: MTT assay was applied to detect the...Objective: To investigate the effects of CAL-101, particularly when combined with bortezomib(BTZ) on mantle cell lymphoma(MCL) cells, and to explore its relative mechanisms.Methods: MTT assay was applied to detect the inhibitory effects of different concentrations of CAL-101. MCL cells were divided into four groups: control group, CAL-101 group, BTZ group, and CAL-101/BTZ group. The expression of PI3K-p110σ, AKT, ERK, p-AKT and p-ERK were detected by Western blot. The apoptosis rates of CAL-101 group, BTZ group, and combination group were detected by flow cytometry. The location changes of nuclear factor kappa-B(NF-κB) of 4 groups was investigated by NF-κB Kit exploring. Western blot was applied to detect the levels of caspase-3 and the phosphorylation of AKT in different groups. Results: CAL-101 dose- and time-dependently induced reduction in MCL cell viability. CAL-101 combined with BTZ enhanced the reduction in cell viability and apoptosis. Western blot analysis showed that CAL-101 significantly blocked the PI3K/AKT and ERK signaling pathway in MCL cells. The combination therapy contributed to the inactivation of NF-κB and AKT in MCL cell lines. However, cleaved caspase-3 was up-regulated after combined treatment. Conclusion: Our study showed that PI3K/p110σ is a novel therapeutic target in MCL, and the underlying mechanism could be the blocking of the PI3K/AKT and ERK signaling pathways. These findings provided a basis for clinical evaluation of CAL-101 and a rationale for its application in combination therapy, particularly with BTZ.展开更多
[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signal...[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signaling pathway.[Methods]Sixty sexually mature female SD rats were irradiated with ^(60)Co-γ-ray(6.0 Gy,LD 40)for 24 h at one time.These rats were randomly divided into model group,Progynova group[0.18(g·kg)/d],Progynova[0.09(g·kg)/d]+Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill medium dose[9.45(g·kg)/d)]group and Zuogui Pill low dose[4.725(g·kg)/d]group.The administration(once a day)lasted 21 d.The rat serum[follicle-stimulating hormone(FSH),luteinizing hormone(LH)and estradiol(E_(2))]were detected by Enzyme-linked immunosorbent assay(ELISA).The morphological changes of ovary were observed by hematoxylin-eosin(HE)staining.The apoptosis rate of granulosa cells was detected by terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling(TUNEL).The protein expression of phosphorylated(p)-PI3K,p-Akt,p-mTOR,B-cell lymphoma-2(Bcl-2),and Bcl-2-associated X protein(Bax)in ovarian tissues were detected by Western blot.[Results]Compared with the normal group,the model group showed significant increase in the serum FSH(P<0.01),significant decrease in serum E_(2)(P<0.05),and decrease in the number of early follicles and luteum in the ovary(P<0.01).Besides,the apoptosis rate of granulosa cells increased significantly(P<0.01);the expression of p-PI3K,p-Akt,p-mTOR and Bcl-2 in ovarian tissue decreased significantly,while the expression of Bax increased significantly(P<0.01).Compared with the model group,the number of early follicles in the ovary increased and the apoptosis rate of granulosa cells decreased after intervention in each administration group.In addition,the protein expressions of p-PI3K,p-Akt,p-mTOR and Bcl-2 increased,while the expression of Bax decreased,especially in Progynova+Zuogui Pill high dose group,the differences were statistically significant(P<0.05,P<0.01).[Conclusions]Zuogui Pill may protect the radiation-injured ovary through activating the expression of PI3K/Akt/mTOR protein in ovarian tissue,increasing the amount of Bcl-2 protein and inhibiting the expression of Bax protein.展开更多
Objective To investigate the potential role of Tongxinluo(TXL)in attenuating myocardial fibrosis after myocardial ischemia-reperfusion injury(MIRI)in mice.Methods A MIRI mouse model was established by left anterior de...Objective To investigate the potential role of Tongxinluo(TXL)in attenuating myocardial fibrosis after myocardial ischemia-reperfusion injury(MIRI)in mice.Methods A MIRI mouse model was established by left anterior descending coronary artery ligation for 45 min.According to a random number table,66 mice were randomly divided into 6 groups(n=11 per group):the sham group,the model group,the LY-294002 group,the TXL group,the TXL+LY-294002 group and the benazepril(BNPL)group.The day after modeling,TXL and BNPL were administered by gavage.Intraperitoneal injection of LY-294002 was performed twice a week for 4 consecutive weeks.Echocardiography was used to measure cardiac function in mice.Masson staining was used to evaluate the degree of myocardial fibrosis in mice.Qualitative and quantitative analysis of endothelial mesenchymal transition(EndMT)after MIRI was performed by immunohistochemistry,immunofluorescence staining and flow cytometry,respectively.The protein expressions of platelet endothelial cell adhesion molecule-1(CD31),α-smoth muscle actin(α-SMA),phosphatidylinositol-3-kinase(PI3K)and phospho protein kinase B(p-AKT)were assessed using Western blot.Results TXL improved cardiac function in MIRI mice,reduced the degree of myocardial fibrosis,increased the expression of CD31 and inhibited the expression ofα-SMA,thus inhibited the occurrence of EndMT(P<0.05 or P<0.01).TXL significantly increased the protein expressions of PI3K and p-AKT(P<0.05 or P<0.01).There was no significant difference between TXL and BNPL group(P>0.05).In addition,the use of the PI3K/AKT pathway-specific inhibitor LY-294002 to block this pathway and combination with TXL intervention,eliminated the protective effect of TXL,further supporting the protective effect of TXL.Conclusion TXL activated the PI3K/AKT signaling pathway to inhibit EndMT and attenuated myocardial fibrosis after MIRI in mice.展开更多
Osteoporosis is a metabolic dysregulation of bone that occurs mainly in postmenopausal women,and the hyperfunction of osteoclasts is the primary contributor to postmenopausal osteoporosis.However,the development of ef...Osteoporosis is a metabolic dysregulation of bone that occurs mainly in postmenopausal women,and the hyperfunction of osteoclasts is the primary contributor to postmenopausal osteoporosis.However,the development of effective therapeutic drugs and precise delivery systems remains a challenge in the field of anti-absorption therapy.Here,we reported theα-cyperone(α-CYP)for anti-osteoporosis and developed a liposome-based nano-drug delivery system ofα-CYP,that specifically targets the bone resorption interface.Firstly,we found that theα-CYP,one of the major sesquiterpenes of Cyperus rotundus L.,attenuated the progression of osteoporosis in ovariectomized(OVX)mice and down-regulated the expression of phosphorylated proteins of phosphoinositide 3-kinase(PI3K)and protein kinase B(Akt),causing down-regulation of osteoclast-related genes/proteins and curbing osteoclast differentiation.Furthermore,α-CYP reversed the activation of osteoclastic differentiation and enhanced osteoporosis-related proteins expression caused by PI3K/Akt agonist(YS-49).More importantly,we adopted the osteoclastic resorption surface targeting peptide Asp8 and constructed the liposome(lipαC@Asp8)to deliverα-CYP to osteoclasts and confirmed its anti-osteoporosis effect and enhanced osteoclast inhibition by blocking PI3K/Akt axis.In conclusion,this study demonstrated thatα-CYP inhibits osteoclast differentiation and osteoporosis development by silencing PI3K/Akt pathway,and the liposome targeting delivery systems loaded withα-CYP might provide a novel and effective strategy to treat osteoporosis.展开更多
The phosphatidylinositol 3-kinase(PI3K) pathway is frequently activated in human cancers.Class I PI3 Ks are lipid kinases that phosphorylate phosphatidylinositol 4,5-bisphosphate(PIP2) at the 3-OH of the inositol ring...The phosphatidylinositol 3-kinase(PI3K) pathway is frequently activated in human cancers.Class I PI3 Ks are lipid kinases that phosphorylate phosphatidylinositol 4,5-bisphosphate(PIP2) at the 3-OH of the inositol ring to generate phosphatidylinositol 3,4,5-trisphosphate(PIP3), which in turn activates Akt and the downstream effectors like mammalian target of rapamycin(m TOR) to play key roles in carcinogenesis. Therefore, PI3 K has become an important anticancer drug target, and currently there is very high interest in the pharmaceutical development of PI3 K inhibitors. Idelalisib has been approved in USA and Europe as the first-in-class PI3 K inhibitor for cancer therapy. Dozens of other PI3 K inhibitors including BKM120 and ZSTK474 are being evaluated in clinical trials. Multifaceted studies on these PI3 K inhibitors are being performed, such as single and combinational efficacy, resistance, biomarkers,etc. This review provides an introduction to PI3 K and summarizes key advances in the development of PI3 K inhibitors.展开更多
Phosphatidylinositol 3-kinase(PI3K)is a crucial cell survival pathway implicated in tumorigenesis because of its role in stimulating cell proliferation and suppressing apoptosis.This study was to investigate the regul...Phosphatidylinositol 3-kinase(PI3K)is a crucial cell survival pathway implicated in tumorigenesis because of its role in stimulating cell proliferation and suppressing apoptosis.This study was to investigate the regulation of proliferation and apoptosis by LY294002,an inhibitor of PI3K in cervical cancer cells and the expression of FLICE-like inhibitory protein(c-FLIP)in vitro.Human cervical cancer HeLa cells were used in this experiment and cultured.The cultured cells were treated with LY294002 at different concentrations(10,25,50 and 100µmol/L)for 6,12,24,and 48 h before harvesting for evaluation.Cell viability was measured by 3-(4,5)-dimethylthiazol(-2-y1)-3,5-di-phenyltetrazoliumbromide(MTT)assay.Apoptosis was analyzed byflow cytometry.The expression of c-FLIP was detected by Western blot.Cell viability was inhibited by LY294002 significantly(P<0.05).Flow cytometry analysis revealed that cell apoptosis was significantly increased in the presence of LY294002 as compared with the control group.Although the expression of c-FLIP was increased in a short time,the expression of c-FLIP was markedly suppressed after the treatment of LY294002 for 48 h.These results suggested that the PI3K/Akt signal pathway might be involved in the regulation of cell apoptosis in cervical cancer cells.Moreover,the regulation of c-FLIP expression through PI3K/Akt signal pathway in cervical cancer cells was observed in vitro.展开更多
Mesenchymal stem cell (MSC) transplantation has shown a therapeutic potential to repair the ischemic and infracted myocardium, but the effects are limited by the apoptosis and loss of donor cells in host cardiac mic...Mesenchymal stem cell (MSC) transplantation has shown a therapeutic potential to repair the ischemic and infracted myocardium, but the effects are limited by the apoptosis and loss of donor cells in host cardiac microenvironment. The aim of this study is to explore the cytoprotection of heat shock protein 90 (Hsp90) against hypoxia and serum deprivation-induced apoptosis and the possible mechanisms in rat MSCs. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was assessed by Hoechst 33258 nuclear staining and flow cytometric analysis with annexin V/PI staining. The gene expression of Toll-like receptor-4 (TLR-4) and V-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (ErbB2) was detected by real-time poly- merase chain reaction (PCR). The protein levels of cleaved caspase-3, Bcl-2, Bcl-xL, Bax, totaI-ERK, phospho-ERK, totaI-Akt, phospho-Akt, and Hsp90 were detected by Western blot. The production of nitric oxide was measured by spectrophotometric assay. Hsp90 improves MSC viability and protects MSCs against apoptosis induced by serum deprivation and hypoxia. The protective role of Hsp90 not only elevates Bcl-2/Bax and Bcl-xL/Bax expression and attenuates cleaved caspase-3 expression via down-regulating membrane TLR-4 and ErbB2 receptors and then ac- tivating their downstream PI3K/Akt and ERK1/2 pathways, but also enhances the paracrine effect of MSCs. These findings demonstrated a novel and effective treatment strategy against MSC apoptosis in cell transplantation.展开更多
Objective:This study investigated the potential mechanisms behind the beneficial effects of Fructus Zanthoxyli(FZ)against type 2 diabetes mellitus(T2DM)based on network pharmacology and experimental validation.Methods...Objective:This study investigated the potential mechanisms behind the beneficial effects of Fructus Zanthoxyli(FZ)against type 2 diabetes mellitus(T2DM)based on network pharmacology and experimental validation.Methods:Ultra-high-performance liquid chromatography coupled with hybrid quadrupole-orbitrap high-resolution mass spectrometry,and gas chromatography-mass spectrometry were used to identify the constituents of FZ.Next,the differentially expressed genes linked to the treatment of diabetes with FZ were screened using online databases(including Gene Expression Omnibus database and Swiss Target Prediction online database),and the overlapping genes and their enrichment were analyzed by Kyoto Encyclopedia of Genes and Genomes(KEGG).Finally,the pathway was verified by in vitro experiments,and cell staining with oil red and Nile red showed that the extract of FZ had a therapeutic effect on T2DM.Results:A total of 43 components were identified from FZ,and 39 differentially expressed overlapping genes were screened as the possible targets of FZ in T2DM.The dug component-target network indicated that PPARA,PPARG,PIK3R3,JAK2 and GPR88 might be the core genes targeted by FZ in the treatment of T2DM.Interestingly,the enrichment analysis of KEGG showed that effects of FZ against T2DM were closely correlated with the adenosine monophosphate-activated protein kinase(AMPK)and phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt)signaling pathways.In vitro experiments further confirmed that FZ significantly inhibited palmitic acid-induced lipid formation in Hep G2 cells.Moreover,FZ treatment was able to promote the AMPK and PI3K/Akt expressions in Hep G2 cells.Conclusion:Network pharmacology combined with experimental validation revealed that FZ extract can improve the glycolipid metabolism disorder of T2DM via activation of the AMPK/PI3K/Akt pathway.展开更多
The fruits of Eucalyptus globulus Labill.are known to have a plenty of medicinal properties,such as anti-tumor,anti-inflammatory,and immunosuppressive activity.Our previous study found that the phloroglucinol-sesquite...The fruits of Eucalyptus globulus Labill.are known to have a plenty of medicinal properties,such as anti-tumor,anti-inflammatory,and immunosuppressive activity.Our previous study found that the phloroglucinol-sesquiterpene adducts in the fruits of E.globulus were immunosuppressive active constituents,especially Eucalyptin C(EuC).Phosphoinositide 3-kinases-γ(PI3Kγ)plays a pivotal role in T cell mediated excessive immune responses.In this study,EuC was first discovered to be a novel selective PI3Kγinhibitor with an IC50 value of 0.9μmol·L^(−1) and selectivity over 40-fold towards the other PI3K isoforms.Molecular docking,molecular dynamics simulation,and cellular thermal shift assay showed that EuC bound to PI3Kγ.Furthermore,EuC suppressed the downstream of PI3Kγto induce the apoptosis and inhibit the activation of primary spleen cells derived from allergic contact dermatitis mice.This work highlights the role of the fruits of E.globulus as a source of bioactive plant with immunosuppressive activity.展开更多
Objective:To systematically explore the effect and mechanism of melastomatis dodecandri herba(Melastoma dodecandrum Lour.)in the treatment of hepatitis based on network pharmacology.Method:We evaluated the hepatoprote...Objective:To systematically explore the effect and mechanism of melastomatis dodecandri herba(Melastoma dodecandrum Lour.)in the treatment of hepatitis based on network pharmacology.Method:We evaluated the hepatoprotective effects of M.dodecandrum in concanavalin A(Con A)-induced hepatitis in mice by assessing survival rate,histological analysis,serum transaminases,and related cytokines.Then the mechanism of action was predicted by a network pharmacology-based strategy.Based on the results,we measured the hepatic expression of related genes at mRNA level and proteins related to the phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt)and nuclear factorkappa B(NF-кB)pathways.Results:Our study results clearly demonstrated that M.dodecandrum pretreatment significantly alleviated liver injury.This was demonstrated by an increase in survival rate,decreased severity of liver damage,and reduced serum transaminase levels compared with those in the Con A group.Moreover,M.dodecandrum significantly reduced the serum levels of tumor necrosis factor-a,interleukin-6,and interferon-g and increased the liver levels of superoxide dismutase,which indicated that M.dodecandrum exhibits anti-inflammatory and antioxidant activities.On the basis of network pharmacology,50 nodes were selected as major hubs based on their topological importance.Pathway enrichment analyses indicated that the putative targets of M.dodecandrum mostly participate in various pathways associated with the anti-inflammation response,which implies the underlying mechanism by which M.dodecandrum acts on hepatitis.Real-time fluorescent quantitative PCR analysis showed that M.dodecandrum downregulates the mRNA expression of interleukin-6,Toll-like receptor 7,interleukin-1 receptor-associated kinase-4,NF-кB and tumor necrosis factor-a in liver tissues.Western blotting showed that M.dodecandrum pretreatment protected against inflammation through activating the PI3K-Akt pathway by upregulating phosphorylated Akt(p-Akt)expression and suppressing NF-кB activation by inhibiting the phosphorylation of IKK,IkBa,and p65.Conclusion:The present work demonstrated the hepatoprotective effects of M.dodecandrum by regulating the PI3K/Akt and NF-кB pathways in Con A-induced mice,which provide insights into the treatment of hepatitis using M.dodecandrum.展开更多
Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and af...Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy.The mechanistic target of rapamycin(m TOR) is a promising agent for the development of novel regenerative strategies for the treatment of DM.m TOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis,insulin resistance,insulin secretion,stem cell proliferation and differentiation,pancreatic β-cell function,and programmed cell death with apoptosis and autophagy.m TOR is central element for the protein complexes m TOR Complex 1(m TORC1) and m TOR Complex 2(m TORC2) and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase(PI 3-K),protein kinase B(Akt),AMP activated protein kinase(AMPK),silent mating type information regulation 2 homolog 1(Saccharomyces cerevisiae)(SIRT1),Wnt1 inducible signaling pathway protein 1(WISP1),and growth factors.As a result,m TOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease.Future studies directed to elucidate the delicate balance m TOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM.展开更多
Pancreatic cancer is ranked as the fourth leading cause of cancer-related mortality and is predicted to become the second leading cause of cancer-related death by 2030.The cause of this high mortality rate is due to p...Pancreatic cancer is ranked as the fourth leading cause of cancer-related mortality and is predicted to become the second leading cause of cancer-related death by 2030.The cause of this high mortality rate is due to pancreatic ductal adenocarcinoma’s rapid progression and metastasis,and development of drug resistance.Today,cancer immunotherapy is becoming a strong candidate to not only treat various cancers but also to combat against chemoresistance.Studies have suggested that complement system pathways play an important role in cancer progression and chemoresistance,especially in pancreatic cancer.A recent report also suggested that several signaling pathways play an important role in causing chemoresistance in pancreatic cancer,major ones including nuclear factor kappa B,signal transducer and activator of transcription 3,c-mesenchymal-epithelial transition factor,and phosphoinositide-3-kinase/protein kinase B.In addition,it has also been proven that the complement system has a very active role in establishing the tumor microenvironment,which would aid in promoting tumorigenesis,progression,metastasis,and recurrence.Interestingly,it has been shown that the downstream products of the complement system directly upregulate inflammatory mediators,which in turn activate these chemo-resistant pathways.Therefore,targeting complement pathways could be an innovative approach to combat against pancreatic cancer drugs resistance.In this review,we have discussed the role of complement system pathways in pancreatic cancer drug resistance and a special focus on the complement as a therapeutic target in pancreatic cancer.展开更多
基金National Natural Science Foundation of China(No.81860709)Baise City Science and Technology Plan Project(No.Encyclopedia 20224139,Encyclopedia 20211807)2023 Youjiang Ethnic Medical College Graduate Innovation Program Project(No.YXCXJH2023013)。
文摘Objective:To investigate the effects of stilbene glycoside(TSG)on okadaic acid-induced apoptosis in human neuroblastoma cells(SH-SY5Y)via the PI3K/AKT pathway.Methods:The optimal concentration of OA was screened by CCK-8 assay,and SH-SY5Y cells were divided into control group,model group,TSG group,LY294002 group and LY294002+TSG group.The proliferation and apoptosis in each group were detected by CCK-8 and TUNEL assays;Western blotting method and real-time fluorescence quantitative polymerase chain reaction was used to detect the expression of PI3K,P-PI3K(Y607),AKT,P-AKT(Ser473),Bcl-2 and Bax proteins.The relative protein expression was represented by P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax gray ratio.Results:CCK-8 screened the optimal concentration of OA as 40 nmol/L.Compared with the control group,the model group increased relative cell viability,decreased apoptosis rate,the pathway and apoptotic proteins expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax were decreased,and the mRNA expression levels of PI3K,AKT and Bcl-2 were decreased.Bax mRNA expression level increased(P<0.05);Compared with model group,TSG group increased relative cell viability,decreased apoptosis rate,increased protein expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT,Bcl-2/Bax,and increased mRNA expression levels of PI3K,AKT,and Bcl-2.Bax mRNA expression decreased(P<0.05),LY294002 group decreased relative cell viability,increased apoptosis rate,P-PI3K(Y607)/PI3K protein expression levels were significantly decreased(P<0.05),P-AKT(Ser473)/AKT and Bcl-2/Bax protein expression levels were significantly decreased,but there was no statistical significance,PI3K,AKT and Bcl-2 mRNA expression levels were decreased,and Bax mRNA expression levels were increased(all P<0.05);Compared with LY294002 group,LY294002+TSG group increased relative cell viability,decreased apoptosis rate,and the protein expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax were increased.The mRNA expression levels of PI3K,AKT,Bcl-2 were increased,Bax was decreased(all P<0.05).Conclusion:Stilbene glycoside may alleviate okadaic acid-induced apoptosis in SH-SY5Y cells by interfering with the PI3K/AKT signaling pathway,which in turn regulates the expression of apoptotic factors such as Bcl-2 and Bax.
基金the Medical Research Council(MR/R004544/1,MR/R004463/1,to RE)EU ERA-NET NEURON(AxonRepair grant,to BN)+1 种基金Fight for Sight(5119/5120,and 5065-5066,to RE)National Eye Research Centre(to RE).
文摘Much research has focused on the PI3-kinase and PTEN signaling pathway with the aim to stimulate repair of the injured central nervous system.Axons in the central nervous system fail to regenerate,meaning that injuries or diseases that cause loss of axonal connectivity have life-changing consequences.In 2008,genetic deletion of PTEN was identified as a means of stimulating robust regeneration in the optic nerve.PTEN is a phosphatase that opposes the actions of PI3-kinase,a family of enzymes that function to generate the membrane phospholipid PIP_(3) from PIP_(2)(phosphatidylinositol(3,4,5)-trisphosphate from phosphatidylinositol(4,5)-bisphosphate).Deletion of PTEN therefore allows elevated signaling downstream of PI3-kinase,and was initially demonstrated to promote axon regeneration by signaling through mTOR.More recently,additional mechanisms have been identified that contribute to the neuron-intrinsic control of regenerative ability.This review describes neuronal signaling pathways downstream of PI3-kinase and PIP3,and considers them in relation to both developmental and regenerative axon growth.We briefly discuss the key neuron-intrinsic mechanisms that govern regenerative ability,and describe how these are affected by signaling through PI3-kinase.We highlight the recent finding of a developmental decline in the generation of PIP_(3) as a key reason for regenerative failure,and summarize the studies that target an increase in signaling downstream of PI3-kinase to facilitate regeneration in the adult central nervous system.Finally,we discuss obstacles that remain to be overcome in order to generate a robust strategy for repairing the injured central nervous system through manipulation of PI3-kinase signaling.
文摘Activation of the phosphoinositide 3 kinase(PI3K)/Akt/mammalian target of rapamycin(mTOR) pathway is common in breast cancer. There is preclinical data to support inhibition of the pathway, and phase Ⅰ to Ⅲ trials involving inhibitors of the pathway have been or are being conducted in solid tumors and breast cancer. Everolimus, an mTOR inhibitor, is currently approved for the treatment of hormone receptor(HR)-positive, human epidermal growth factor receptor 2(HER2)-negative breast cancer. In this review, we summarise the efficacy and toxicity findings from the randomised clinical trials, with simplified guidelines on the management of potential adverse effects. Education of healthcare professionals and patients is critical for safety and compliance. While there is some clinical evidence of activity of mTOR inhibition in HR-positive and HER2-positive breast cancers, the benefits may be more pronounced in selected subsets rather than in the overall population. Further development of predictive biomarkers will be useful in the selection of patients who will benefit from inhibition of the PI3K/Akt/mTOR(PAM) pathway.
基金supported by intramural research funding of National Center for Complementary and Alternative Medicine(now is National Center for Complementary and Integrative Health),NIH,the US Department of Health and Human Services(to X.L.)and an operating grant(MOP 123279)from Canadian Institutes for Health Research(to Z.Y.)
文摘Our recent studies with cultured retinal pigment epithelium cells suggested that overexpression of interleukin 17 receptor C(IL-17RC),a phenomenon observed in peripheral blood and chorioretinal tissues with age-related macular degeneration(AMD),was associated with altered activation of phosphatidylinositide 3-kinase(PI3K),Akt,and glycogen synthase kinase 3(GSK3).We wondered whether or not altered PI3 K,Akt,and GSK3 activities could be detected in peripheral blood mononuclear cells(PBMC) obtained from AMD patients.In the patients' PBMC,absent or reduced serine-phosphorylation of GSK3α or GSK3β was observed,which was accompanied with increased phosphorylation of GSK3 substrates(e.g.CCAAT enhancer binding protein a,insulin receptor substrate 1,and TAU),indicative of enhanced GSK3 activation.In addition,decreased protein mass of PI3K85α and tyrosinephosphorylation of PI3K50α was present in PBMC of the AMD patients,suggesting impaired PI3 K activation.Moreover,abnormally lowered molecular weight forms of Akt and GSK3 were detected in PBMC of the AMD patients.These data demonstrate that despite the presence of high levels of IL-17 RC,Wnt-3a and vascular endothelial growth factor,the PI3K/Akt/GSK3 signaling pathway is insensitive to these stimuli in PBMC of the AMD patients.Thus,measurement of PI3K/Akt/GSK3 expression and activity in PBMC may serve as a surrogate biomarker for AMD.
基金supported by the National Natural Science Foundation of China (Grant No. 30672208, 81270603, and 31301161)Tianjin Natural Science Foundation of China (Grant No. 13JCYBJC22800)
文摘Objective: To investigate the effects of CAL-101, particularly when combined with bortezomib(BTZ) on mantle cell lymphoma(MCL) cells, and to explore its relative mechanisms.Methods: MTT assay was applied to detect the inhibitory effects of different concentrations of CAL-101. MCL cells were divided into four groups: control group, CAL-101 group, BTZ group, and CAL-101/BTZ group. The expression of PI3K-p110σ, AKT, ERK, p-AKT and p-ERK were detected by Western blot. The apoptosis rates of CAL-101 group, BTZ group, and combination group were detected by flow cytometry. The location changes of nuclear factor kappa-B(NF-κB) of 4 groups was investigated by NF-κB Kit exploring. Western blot was applied to detect the levels of caspase-3 and the phosphorylation of AKT in different groups. Results: CAL-101 dose- and time-dependently induced reduction in MCL cell viability. CAL-101 combined with BTZ enhanced the reduction in cell viability and apoptosis. Western blot analysis showed that CAL-101 significantly blocked the PI3K/AKT and ERK signaling pathway in MCL cells. The combination therapy contributed to the inactivation of NF-κB and AKT in MCL cell lines. However, cleaved caspase-3 was up-regulated after combined treatment. Conclusion: Our study showed that PI3K/p110σ is a novel therapeutic target in MCL, and the underlying mechanism could be the blocking of the PI3K/AKT and ERK signaling pathways. These findings provided a basis for clinical evaluation of CAL-101 and a rationale for its application in combination therapy, particularly with BTZ.
基金Supported by National Natural Science Foundation of China(81760806)Project of Traditional Chinese Medicine Administration of Gansu Province(GZK-2019-28)Innovation Ability Improvement Project of Higher Education Institutions of Gansu Province(2019B-103)。
文摘[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signaling pathway.[Methods]Sixty sexually mature female SD rats were irradiated with ^(60)Co-γ-ray(6.0 Gy,LD 40)for 24 h at one time.These rats were randomly divided into model group,Progynova group[0.18(g·kg)/d],Progynova[0.09(g·kg)/d]+Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill medium dose[9.45(g·kg)/d)]group and Zuogui Pill low dose[4.725(g·kg)/d]group.The administration(once a day)lasted 21 d.The rat serum[follicle-stimulating hormone(FSH),luteinizing hormone(LH)and estradiol(E_(2))]were detected by Enzyme-linked immunosorbent assay(ELISA).The morphological changes of ovary were observed by hematoxylin-eosin(HE)staining.The apoptosis rate of granulosa cells was detected by terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling(TUNEL).The protein expression of phosphorylated(p)-PI3K,p-Akt,p-mTOR,B-cell lymphoma-2(Bcl-2),and Bcl-2-associated X protein(Bax)in ovarian tissues were detected by Western blot.[Results]Compared with the normal group,the model group showed significant increase in the serum FSH(P<0.01),significant decrease in serum E_(2)(P<0.05),and decrease in the number of early follicles and luteum in the ovary(P<0.01).Besides,the apoptosis rate of granulosa cells increased significantly(P<0.01);the expression of p-PI3K,p-Akt,p-mTOR and Bcl-2 in ovarian tissue decreased significantly,while the expression of Bax increased significantly(P<0.01).Compared with the model group,the number of early follicles in the ovary increased and the apoptosis rate of granulosa cells decreased after intervention in each administration group.In addition,the protein expressions of p-PI3K,p-Akt,p-mTOR and Bcl-2 increased,while the expression of Bax decreased,especially in Progynova+Zuogui Pill high dose group,the differences were statistically significant(P<0.05,P<0.01).[Conclusions]Zuogui Pill may protect the radiation-injured ovary through activating the expression of PI3K/Akt/mTOR protein in ovarian tissue,increasing the amount of Bcl-2 protein and inhibiting the expression of Bax protein.
基金Supported by the National Natural Science Foundation of China(No.81973692)Traditional Chinese Medicine Innovation Project of Hebei Province(No.223777120D)High-Level Talent Funding Program of Hebei(No.E2020100001)。
文摘Objective To investigate the potential role of Tongxinluo(TXL)in attenuating myocardial fibrosis after myocardial ischemia-reperfusion injury(MIRI)in mice.Methods A MIRI mouse model was established by left anterior descending coronary artery ligation for 45 min.According to a random number table,66 mice were randomly divided into 6 groups(n=11 per group):the sham group,the model group,the LY-294002 group,the TXL group,the TXL+LY-294002 group and the benazepril(BNPL)group.The day after modeling,TXL and BNPL were administered by gavage.Intraperitoneal injection of LY-294002 was performed twice a week for 4 consecutive weeks.Echocardiography was used to measure cardiac function in mice.Masson staining was used to evaluate the degree of myocardial fibrosis in mice.Qualitative and quantitative analysis of endothelial mesenchymal transition(EndMT)after MIRI was performed by immunohistochemistry,immunofluorescence staining and flow cytometry,respectively.The protein expressions of platelet endothelial cell adhesion molecule-1(CD31),α-smoth muscle actin(α-SMA),phosphatidylinositol-3-kinase(PI3K)and phospho protein kinase B(p-AKT)were assessed using Western blot.Results TXL improved cardiac function in MIRI mice,reduced the degree of myocardial fibrosis,increased the expression of CD31 and inhibited the expression ofα-SMA,thus inhibited the occurrence of EndMT(P<0.05 or P<0.01).TXL significantly increased the protein expressions of PI3K and p-AKT(P<0.05 or P<0.01).There was no significant difference between TXL and BNPL group(P>0.05).In addition,the use of the PI3K/AKT pathway-specific inhibitor LY-294002 to block this pathway and combination with TXL intervention,eliminated the protective effect of TXL,further supporting the protective effect of TXL.Conclusion TXL activated the PI3K/AKT signaling pathway to inhibit EndMT and attenuated myocardial fibrosis after MIRI in mice.
基金supported by the National Key Research and Development Project(No.2021YFA1201404)Major Project of the National Natural Science Foundation of China(Nos.81991514,82272530)+2 种基金Jiangsu Province Medical Innovation Center of Orthopedic Surgery(No.CXZX202214)Jiangsu Provincial Key Medical Center Foundation,Jiangsu Provincial Medical Outstanding Talent Foundation,Jiangsu Provincial Medical Youth Talent Foundation,Jiangsu Provincial Key Medical Talent Foundationthe Fundamental Research Funds for the Central Universities(Nos.14380493 and 14380494).
文摘Osteoporosis is a metabolic dysregulation of bone that occurs mainly in postmenopausal women,and the hyperfunction of osteoclasts is the primary contributor to postmenopausal osteoporosis.However,the development of effective therapeutic drugs and precise delivery systems remains a challenge in the field of anti-absorption therapy.Here,we reported theα-cyperone(α-CYP)for anti-osteoporosis and developed a liposome-based nano-drug delivery system ofα-CYP,that specifically targets the bone resorption interface.Firstly,we found that theα-CYP,one of the major sesquiterpenes of Cyperus rotundus L.,attenuated the progression of osteoporosis in ovariectomized(OVX)mice and down-regulated the expression of phosphorylated proteins of phosphoinositide 3-kinase(PI3K)and protein kinase B(Akt),causing down-regulation of osteoclast-related genes/proteins and curbing osteoclast differentiation.Furthermore,α-CYP reversed the activation of osteoclastic differentiation and enhanced osteoporosis-related proteins expression caused by PI3K/Akt agonist(YS-49).More importantly,we adopted the osteoclastic resorption surface targeting peptide Asp8 and constructed the liposome(lipαC@Asp8)to deliverα-CYP to osteoclasts and confirmed its anti-osteoporosis effect and enhanced osteoclast inhibition by blocking PI3K/Akt axis.In conclusion,this study demonstrated thatα-CYP inhibits osteoclast differentiation and osteoporosis development by silencing PI3K/Akt pathway,and the liposome targeting delivery systems loaded withα-CYP might provide a novel and effective strategy to treat osteoporosis.
文摘The phosphatidylinositol 3-kinase(PI3K) pathway is frequently activated in human cancers.Class I PI3 Ks are lipid kinases that phosphorylate phosphatidylinositol 4,5-bisphosphate(PIP2) at the 3-OH of the inositol ring to generate phosphatidylinositol 3,4,5-trisphosphate(PIP3), which in turn activates Akt and the downstream effectors like mammalian target of rapamycin(m TOR) to play key roles in carcinogenesis. Therefore, PI3 K has become an important anticancer drug target, and currently there is very high interest in the pharmaceutical development of PI3 K inhibitors. Idelalisib has been approved in USA and Europe as the first-in-class PI3 K inhibitor for cancer therapy. Dozens of other PI3 K inhibitors including BKM120 and ZSTK474 are being evaluated in clinical trials. Multifaceted studies on these PI3 K inhibitors are being performed, such as single and combinational efficacy, resistance, biomarkers,etc. This review provides an introduction to PI3 K and summarizes key advances in the development of PI3 K inhibitors.
文摘Phosphatidylinositol 3-kinase(PI3K)is a crucial cell survival pathway implicated in tumorigenesis because of its role in stimulating cell proliferation and suppressing apoptosis.This study was to investigate the regulation of proliferation and apoptosis by LY294002,an inhibitor of PI3K in cervical cancer cells and the expression of FLICE-like inhibitory protein(c-FLIP)in vitro.Human cervical cancer HeLa cells were used in this experiment and cultured.The cultured cells were treated with LY294002 at different concentrations(10,25,50 and 100µmol/L)for 6,12,24,and 48 h before harvesting for evaluation.Cell viability was measured by 3-(4,5)-dimethylthiazol(-2-y1)-3,5-di-phenyltetrazoliumbromide(MTT)assay.Apoptosis was analyzed byflow cytometry.The expression of c-FLIP was detected by Western blot.Cell viability was inhibited by LY294002 significantly(P<0.05).Flow cytometry analysis revealed that cell apoptosis was significantly increased in the presence of LY294002 as compared with the control group.Although the expression of c-FLIP was increased in a short time,the expression of c-FLIP was markedly suppressed after the treatment of LY294002 for 48 h.These results suggested that the PI3K/Akt signal pathway might be involved in the regulation of cell apoptosis in cervical cancer cells.Moreover,the regulation of c-FLIP expression through PI3K/Akt signal pathway in cervical cancer cells was observed in vitro.
基金Project supported by the National Natural Science Foundation of China (Nos.30670868,30770887,and 30770887/H0220)the Key Lab of Traditional Chinese Medicine of Zhejiang Province (No.ZK23812)the Qianjiang Talent Scheme Foundation of Zhejiang Province (No.2009R10069),China
文摘Mesenchymal stem cell (MSC) transplantation has shown a therapeutic potential to repair the ischemic and infracted myocardium, but the effects are limited by the apoptosis and loss of donor cells in host cardiac microenvironment. The aim of this study is to explore the cytoprotection of heat shock protein 90 (Hsp90) against hypoxia and serum deprivation-induced apoptosis and the possible mechanisms in rat MSCs. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was assessed by Hoechst 33258 nuclear staining and flow cytometric analysis with annexin V/PI staining. The gene expression of Toll-like receptor-4 (TLR-4) and V-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (ErbB2) was detected by real-time poly- merase chain reaction (PCR). The protein levels of cleaved caspase-3, Bcl-2, Bcl-xL, Bax, totaI-ERK, phospho-ERK, totaI-Akt, phospho-Akt, and Hsp90 were detected by Western blot. The production of nitric oxide was measured by spectrophotometric assay. Hsp90 improves MSC viability and protects MSCs against apoptosis induced by serum deprivation and hypoxia. The protective role of Hsp90 not only elevates Bcl-2/Bax and Bcl-xL/Bax expression and attenuates cleaved caspase-3 expression via down-regulating membrane TLR-4 and ErbB2 receptors and then ac- tivating their downstream PI3K/Akt and ERK1/2 pathways, but also enhances the paracrine effect of MSCs. These findings demonstrated a novel and effective treatment strategy against MSC apoptosis in cell transplantation.
基金supported by the Project of Sichuan Science and Technology Program(No.22NSFSC1510)the Project of State Administration of Traditional Chinese Medicine of Sichuan Province of China(No.2020HJZX001)。
文摘Objective:This study investigated the potential mechanisms behind the beneficial effects of Fructus Zanthoxyli(FZ)against type 2 diabetes mellitus(T2DM)based on network pharmacology and experimental validation.Methods:Ultra-high-performance liquid chromatography coupled with hybrid quadrupole-orbitrap high-resolution mass spectrometry,and gas chromatography-mass spectrometry were used to identify the constituents of FZ.Next,the differentially expressed genes linked to the treatment of diabetes with FZ were screened using online databases(including Gene Expression Omnibus database and Swiss Target Prediction online database),and the overlapping genes and their enrichment were analyzed by Kyoto Encyclopedia of Genes and Genomes(KEGG).Finally,the pathway was verified by in vitro experiments,and cell staining with oil red and Nile red showed that the extract of FZ had a therapeutic effect on T2DM.Results:A total of 43 components were identified from FZ,and 39 differentially expressed overlapping genes were screened as the possible targets of FZ in T2DM.The dug component-target network indicated that PPARA,PPARG,PIK3R3,JAK2 and GPR88 might be the core genes targeted by FZ in the treatment of T2DM.Interestingly,the enrichment analysis of KEGG showed that effects of FZ against T2DM were closely correlated with the adenosine monophosphate-activated protein kinase(AMPK)and phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt)signaling pathways.In vitro experiments further confirmed that FZ significantly inhibited palmitic acid-induced lipid formation in Hep G2 cells.Moreover,FZ treatment was able to promote the AMPK and PI3K/Akt expressions in Hep G2 cells.Conclusion:Network pharmacology combined with experimental validation revealed that FZ extract can improve the glycolipid metabolism disorder of T2DM via activation of the AMPK/PI3K/Akt pathway.
基金This work was supported by China Postdoctoral Science Foundation(Nos.2019M662006 and 2019TQ0357)the National Natural Science Foundation of China(Nos.81973206,81803392 and 81573309)+5 种基金the Major National Science and Technology Projects of the Chinese Thirteen Five-Year Plan(No.2017ZX09309024)the Funding of Double First-rate Discipline Innovation Team(Nos.CPU2018PZQ17,CPU2018PZQ18,and CPU2018GF05)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01Y036)the Research and Innovation Project for College Graduates of Jiangsu Province 2017(No.KYCX170694)the National College Student Innovation Project for the R&D of Novel Drugs(No.201710316100)Jiangsu Province Graduate Student Training Innovation Project(No.KYLX16_1208).
文摘The fruits of Eucalyptus globulus Labill.are known to have a plenty of medicinal properties,such as anti-tumor,anti-inflammatory,and immunosuppressive activity.Our previous study found that the phloroglucinol-sesquiterpene adducts in the fruits of E.globulus were immunosuppressive active constituents,especially Eucalyptin C(EuC).Phosphoinositide 3-kinases-γ(PI3Kγ)plays a pivotal role in T cell mediated excessive immune responses.In this study,EuC was first discovered to be a novel selective PI3Kγinhibitor with an IC50 value of 0.9μmol·L^(−1) and selectivity over 40-fold towards the other PI3K isoforms.Molecular docking,molecular dynamics simulation,and cellular thermal shift assay showed that EuC bound to PI3Kγ.Furthermore,EuC suppressed the downstream of PI3Kγto induce the apoptosis and inhibit the activation of primary spleen cells derived from allergic contact dermatitis mice.This work highlights the role of the fruits of E.globulus as a source of bioactive plant with immunosuppressive activity.
基金This work was supported by the National Key R&D Program of China(2018YFC1706800).
文摘Objective:To systematically explore the effect and mechanism of melastomatis dodecandri herba(Melastoma dodecandrum Lour.)in the treatment of hepatitis based on network pharmacology.Method:We evaluated the hepatoprotective effects of M.dodecandrum in concanavalin A(Con A)-induced hepatitis in mice by assessing survival rate,histological analysis,serum transaminases,and related cytokines.Then the mechanism of action was predicted by a network pharmacology-based strategy.Based on the results,we measured the hepatic expression of related genes at mRNA level and proteins related to the phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt)and nuclear factorkappa B(NF-кB)pathways.Results:Our study results clearly demonstrated that M.dodecandrum pretreatment significantly alleviated liver injury.This was demonstrated by an increase in survival rate,decreased severity of liver damage,and reduced serum transaminase levels compared with those in the Con A group.Moreover,M.dodecandrum significantly reduced the serum levels of tumor necrosis factor-a,interleukin-6,and interferon-g and increased the liver levels of superoxide dismutase,which indicated that M.dodecandrum exhibits anti-inflammatory and antioxidant activities.On the basis of network pharmacology,50 nodes were selected as major hubs based on their topological importance.Pathway enrichment analyses indicated that the putative targets of M.dodecandrum mostly participate in various pathways associated with the anti-inflammation response,which implies the underlying mechanism by which M.dodecandrum acts on hepatitis.Real-time fluorescent quantitative PCR analysis showed that M.dodecandrum downregulates the mRNA expression of interleukin-6,Toll-like receptor 7,interleukin-1 receptor-associated kinase-4,NF-кB and tumor necrosis factor-a in liver tissues.Western blotting showed that M.dodecandrum pretreatment protected against inflammation through activating the PI3K-Akt pathway by upregulating phosphorylated Akt(p-Akt)expression and suppressing NF-кB activation by inhibiting the phosphorylation of IKK,IkBa,and p65.Conclusion:The present work demonstrated the hepatoprotective effects of M.dodecandrum by regulating the PI3K/Akt and NF-кB pathways in Con A-induced mice,which provide insights into the treatment of hepatitis using M.dodecandrum.
基金supported by American Diabetes Association,American Heart Association,NIH NIEHS,NIH NIA,NIH NINDS,and NIH ARRA
文摘Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy.The mechanistic target of rapamycin(m TOR) is a promising agent for the development of novel regenerative strategies for the treatment of DM.m TOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis,insulin resistance,insulin secretion,stem cell proliferation and differentiation,pancreatic β-cell function,and programmed cell death with apoptosis and autophagy.m TOR is central element for the protein complexes m TOR Complex 1(m TORC1) and m TOR Complex 2(m TORC2) and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase(PI 3-K),protein kinase B(Akt),AMP activated protein kinase(AMPK),silent mating type information regulation 2 homolog 1(Saccharomyces cerevisiae)(SIRT1),Wnt1 inducible signaling pathway protein 1(WISP1),and growth factors.As a result,m TOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease.Future studies directed to elucidate the delicate balance m TOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM.
文摘Pancreatic cancer is ranked as the fourth leading cause of cancer-related mortality and is predicted to become the second leading cause of cancer-related death by 2030.The cause of this high mortality rate is due to pancreatic ductal adenocarcinoma’s rapid progression and metastasis,and development of drug resistance.Today,cancer immunotherapy is becoming a strong candidate to not only treat various cancers but also to combat against chemoresistance.Studies have suggested that complement system pathways play an important role in cancer progression and chemoresistance,especially in pancreatic cancer.A recent report also suggested that several signaling pathways play an important role in causing chemoresistance in pancreatic cancer,major ones including nuclear factor kappa B,signal transducer and activator of transcription 3,c-mesenchymal-epithelial transition factor,and phosphoinositide-3-kinase/protein kinase B.In addition,it has also been proven that the complement system has a very active role in establishing the tumor microenvironment,which would aid in promoting tumorigenesis,progression,metastasis,and recurrence.Interestingly,it has been shown that the downstream products of the complement system directly upregulate inflammatory mediators,which in turn activate these chemo-resistant pathways.Therefore,targeting complement pathways could be an innovative approach to combat against pancreatic cancer drugs resistance.In this review,we have discussed the role of complement system pathways in pancreatic cancer drug resistance and a special focus on the complement as a therapeutic target in pancreatic cancer.