Lipoprotein(a) [Lp(a)] is composed of a low density lipoprotein(LDL)-like particle to which apolipoprotein(a)[apo(a)] is linked by a single disulfide bridge. Lp(a) is considered a causal risk factor for is...Lipoprotein(a) [Lp(a)] is composed of a low density lipoprotein(LDL)-like particle to which apolipoprotein(a)[apo(a)] is linked by a single disulfide bridge. Lp(a) is considered a causal risk factor for ischemic cardiovascular disease(CVD) and calcific aortic valve stenosis(CAVS). The evidence for a causal role of Lp(a) in CVD and CAVS is based on data from large epidemiological databases, mendelian randomization studies, and genome-wide association studies. Despite the well-established role of Lp(a) as a causal risk factor for CVD and CAVS, the underlying mechanisms are not well understood. A key role in the Lp(a) functionality may be played by its oxidized phospholipids(OxPL) content. Importantly, most of circulating OxPL are associated with Lp(a); however, the underlying mechanisms leading to this preferential sequestration of OxPL on Lp(a) over the other lipoproteins,are mostly unknown. Several studies support the hypothesis that the risk of Lp(a) is primarily driven by its OxPL content.An important role in Lp(a) functionality may be played by the lipoprotein-associated phospholipase A_2(Lp-PLA_2),an enzyme that catalyzes the degradation of OxPL and is bound to plasma lipoproteins including Lp(a). The present review article discusses new data on the pathophysiological role of Lp(a) and particularly focuses on the functional role of OxPL and Lp-PLA_2 associated with Lp(a).展开更多
Central nervous system(CNS)trauma,including traumatic brain injury and spinal cord injury,has a high rate of disability and mortality,and effective treatment is currently lacking.Previous studies have revealed that ne...Central nervous system(CNS)trauma,including traumatic brain injury and spinal cord injury,has a high rate of disability and mortality,and effective treatment is currently lacking.Previous studies have revealed that neural inflammation plays a vital role in CNS trauma.As the initial enzyme in neuroinflammation,cytosolic phospholipase A_(2)(cPLA2)can hydrolyze membranous phosphatides at the sn-2 position in a preferential way to release lysophospholipids andω3-polyunsaturated fatty acid dominated by arachidonic acid,thereby inducing secondary injuries.Although there is substantial fresh knowledge pertaining to cPLA2,in-depth comprehension of how cPLA2 participates in CNS trauma and the potential methods to amelio rate the clinical res ults after CNS trauma are still insufficient.The present review summarizes the latest understanding of how cPLA2 participates in CNS trauma,highlighting novel findings pertaining to how cPLA2 activation initiates the potential mechanisms specifically,neuroinflammation,lysosome membrane functions,and autophagy activity,that damage the CNS after trauma.Moreover,we focused on testing a variety of drugs capable of inhibiting cPLA2 or the upstream pathway,and we explored how those agents might be utilized as treatments to improve the results following CNS trauma.This review aimed to effectively understand the mechanism of cPLA2 activation and its role in the pathophysiological processes of CNS trauma and provide clarification and a new referential framework for future research.展开更多
Acute fulminant pancreatitis was produced in dogs by injection of autobile into the main pancreatic duct.After injection the phospholipase A_2(PLA_2)activities in serum,lung lymph and bronchoalveolar lavage fluid(BAL)...Acute fulminant pancreatitis was produced in dogs by injection of autobile into the main pancreatic duct.After injection the phospholipase A_2(PLA_2)activities in serum,lung lymph and bronchoalveolar lavage fluid(BAL)were elevated significantly,lung lymph flow and pulmonary transvascular potein clearance increased progressively,protein content and cell numbers in BAL in the experimental animals were significantly higher than those in the control animals.Furthermore the lung index,wet to dry lung weight ratio,extravascular lung water to bloodless dry lung weight ra- tio,extravascuar lung water to bloodless dry lung weight ratio increased significantly as compared to control animals.Pretreatment with PLA_2 inhibitor,chloroquine,blocked the changes mentioned above.This experiment suggests:1.PLA_2 activity in lung lymph fluid as well as in serum and BAL is elevated in acute hemorrhagic pancreatitis.2.Elevated PLA_2 activity may increase the pulmonary vascular permeability.3.PLA_2 is the major factor leading to pulmonary edema in acute hemorrhagic pancreatitis.4.Phagocytes contribute to the lung injury induced by PLA_2 to some ex- tent.展开更多
Objective To investigate the potential effects of angiogenic process by secretory phospholipase A2 (sPLA2)inhibitor-HyPE(linking N-derivatized phosphatidyl-ethanolamine to hyaluronic acid)on human bone marrow endothel...Objective To investigate the potential effects of angiogenic process by secretory phospholipase A2 (sPLA2)inhibitor-HyPE(linking N-derivatized phosphatidyl-ethanolamine to hyaluronic acid)on human bone marrow endothelial cell line(HBME-1). Methods In order to examine the suppressing effects of HyPE on HBME-1 proliferation, migration, and capillary-like tube formation, HBME-1 were activated by angiogenic factor, specifically by basic fibroblast growth factor(b-FGF), vascular endothelial growth factor(VEGF),and oncostatin M(OSM)(at a final concentration of 25, 20, and 2.5 ng/mL, respectively), then HBME-1 proliferation, migration, and tube forma-tion were studied in the absence or presence of HyPE. HBME-1 tube formation was specially analyzed in fibrin gel. Results HyPE effectively inhibited HBME-1 proliferation and migration as a dose-dependent manner, whatever HBME-1 were grown in the control culture medium or stimulated with b-FGF, VEGF, or OSM. In fibrin, the formations of HBME-1 derived tube-like structures were enhanced by all angiogenic factors, but these were strongly suppressed by HyPE. Conclusions The results support the involvement of sPLA2 in angiogenesis. It is proposed that sPLA2 inhibitor introduces a novel approach in the control of cancer development.展开更多
The regulatory effects of phospholipase A2(PLA2) inhibitors, chloroquine and dexamethasone, on the activity of blood PLA2 and its related lipid mediators during endotoxic shock were observed in rabbits. The rabbits we...The regulatory effects of phospholipase A2(PLA2) inhibitors, chloroquine and dexamethasone, on the activity of blood PLA2 and its related lipid mediators during endotoxic shock were observed in rabbits. The rabbits were randomized into 4 groups as follows : The normal control (NC) group consisted of 12 rabbits with sham injection . the endotoxic shork (ES) group of 31 rabbits, the chloquine pretreated (CQ) group of 16 rabbits receiving 3 mg/kg of chlorqouine and the dexamethasone-pretreated (DM) group of 10 rabbits receiving 5 mg/kg of dexamethasone. Blood was sampled before and 5 and 30 min, 1 ,3, 5 and 8 h after the administration of endotoxin for the determination of PLA2, platelet activating factor (PAF) , TXB2 and 6-keto-PGF1α. In addrtion, changes of mean arterial pressure (MAP) and respiratory rate (RR) were also carefully recorded. It was found that the activities of PLA2 and PAF and the levels of TXB2 and 6-keto-PGF1α. were significantly increased after the infusion of endotoxin. CQ and DM markedly suppressed the activities of PLA2 and PAF. The inhibition of CQ on TXB2 and 6-keto-PGF1α was greater than that of DM. Besides, CQ and DM could increase the survival rate of the animals from 48% to 75% (CQ group) and 70% (DM group). These findings suggest that PLA2 inhibitors such as CQ and DM can significantly attenuate the formation of shock mediators such as PLA2, PAF, TXB2 and 6-keto-PGF1α, and so improve the prognosis of the victims of endotoxic shock.展开更多
Objective: To imastigate the effects of anisodamine on pulmonary α1- adrenergic receptor andphospholipase A, in acute lung injurg. Methods: Change of α1--adrenergic receptor (al AR ) in lung tissllesduring endotoxin...Objective: To imastigate the effects of anisodamine on pulmonary α1- adrenergic receptor andphospholipase A, in acute lung injurg. Methods: Change of α1--adrenergic receptor (al AR ) in lung tissllesduring endotoxin--induced rat acute lung injury was measured with radioligand biding assay. The effects ofanisodamine on pulmonary α1--AR and phospholipase A2 (PLA2 ) were observed. Results: 1. 4 h after theendotoxin injection, there was a significant decrease in the maximal binding capacity of α1--AR by 34% ascompared with the control group. meanwhile elevated activity of PLA2 in rat lung and reduction of thephospholipids content of cell membrane was found. 2. Anisodamine could attenuate endotoxin--induced acutelung injury in rats. Conclusion: This effect might be related to anisodamine’s blockage of α1--AR andsuppression of PLA2, prevention of membranous phospholipids from degradation. and the reduction ofarachidonic acid release.展开更多
文摘Lipoprotein(a) [Lp(a)] is composed of a low density lipoprotein(LDL)-like particle to which apolipoprotein(a)[apo(a)] is linked by a single disulfide bridge. Lp(a) is considered a causal risk factor for ischemic cardiovascular disease(CVD) and calcific aortic valve stenosis(CAVS). The evidence for a causal role of Lp(a) in CVD and CAVS is based on data from large epidemiological databases, mendelian randomization studies, and genome-wide association studies. Despite the well-established role of Lp(a) as a causal risk factor for CVD and CAVS, the underlying mechanisms are not well understood. A key role in the Lp(a) functionality may be played by its oxidized phospholipids(OxPL) content. Importantly, most of circulating OxPL are associated with Lp(a); however, the underlying mechanisms leading to this preferential sequestration of OxPL on Lp(a) over the other lipoproteins,are mostly unknown. Several studies support the hypothesis that the risk of Lp(a) is primarily driven by its OxPL content.An important role in Lp(a) functionality may be played by the lipoprotein-associated phospholipase A_2(Lp-PLA_2),an enzyme that catalyzes the degradation of OxPL and is bound to plasma lipoproteins including Lp(a). The present review article discusses new data on the pathophysiological role of Lp(a) and particularly focuses on the functional role of OxPL and Lp-PLA_2 associated with Lp(a).
基金supported by the National Natural Science Foundation of China,No.82072192(to KLZ)Public Welfare Technology Research Project of Zhejiang Province,No.LGF20H150003(to KLZ)+1 种基金the Natural Science Foundation of Zhejiang Province,Nos.LY17H060009 and Y21H060050(both to WFN)Wenzhou Science and Technology Bureau Foundation,No.Y20210438(to KLZ)。
文摘Central nervous system(CNS)trauma,including traumatic brain injury and spinal cord injury,has a high rate of disability and mortality,and effective treatment is currently lacking.Previous studies have revealed that neural inflammation plays a vital role in CNS trauma.As the initial enzyme in neuroinflammation,cytosolic phospholipase A_(2)(cPLA2)can hydrolyze membranous phosphatides at the sn-2 position in a preferential way to release lysophospholipids andω3-polyunsaturated fatty acid dominated by arachidonic acid,thereby inducing secondary injuries.Although there is substantial fresh knowledge pertaining to cPLA2,in-depth comprehension of how cPLA2 participates in CNS trauma and the potential methods to amelio rate the clinical res ults after CNS trauma are still insufficient.The present review summarizes the latest understanding of how cPLA2 participates in CNS trauma,highlighting novel findings pertaining to how cPLA2 activation initiates the potential mechanisms specifically,neuroinflammation,lysosome membrane functions,and autophagy activity,that damage the CNS after trauma.Moreover,we focused on testing a variety of drugs capable of inhibiting cPLA2 or the upstream pathway,and we explored how those agents might be utilized as treatments to improve the results following CNS trauma.This review aimed to effectively understand the mechanism of cPLA2 activation and its role in the pathophysiological processes of CNS trauma and provide clarification and a new referential framework for future research.
文摘Acute fulminant pancreatitis was produced in dogs by injection of autobile into the main pancreatic duct.After injection the phospholipase A_2(PLA_2)activities in serum,lung lymph and bronchoalveolar lavage fluid(BAL)were elevated significantly,lung lymph flow and pulmonary transvascular potein clearance increased progressively,protein content and cell numbers in BAL in the experimental animals were significantly higher than those in the control animals.Furthermore the lung index,wet to dry lung weight ratio,extravascular lung water to bloodless dry lung weight ra- tio,extravascuar lung water to bloodless dry lung weight ratio increased significantly as compared to control animals.Pretreatment with PLA_2 inhibitor,chloroquine,blocked the changes mentioned above.This experiment suggests:1.PLA_2 activity in lung lymph fluid as well as in serum and BAL is elevated in acute hemorrhagic pancreatitis.2.Elevated PLA_2 activity may increase the pulmonary vascular permeability.3.PLA_2 is the major factor leading to pulmonary edema in acute hemorrhagic pancreatitis.4.Phagocytes contribute to the lung injury induced by PLA_2 to some ex- tent.
文摘Objective To investigate the potential effects of angiogenic process by secretory phospholipase A2 (sPLA2)inhibitor-HyPE(linking N-derivatized phosphatidyl-ethanolamine to hyaluronic acid)on human bone marrow endothelial cell line(HBME-1). Methods In order to examine the suppressing effects of HyPE on HBME-1 proliferation, migration, and capillary-like tube formation, HBME-1 were activated by angiogenic factor, specifically by basic fibroblast growth factor(b-FGF), vascular endothelial growth factor(VEGF),and oncostatin M(OSM)(at a final concentration of 25, 20, and 2.5 ng/mL, respectively), then HBME-1 proliferation, migration, and tube forma-tion were studied in the absence or presence of HyPE. HBME-1 tube formation was specially analyzed in fibrin gel. Results HyPE effectively inhibited HBME-1 proliferation and migration as a dose-dependent manner, whatever HBME-1 were grown in the control culture medium or stimulated with b-FGF, VEGF, or OSM. In fibrin, the formations of HBME-1 derived tube-like structures were enhanced by all angiogenic factors, but these were strongly suppressed by HyPE. Conclusions The results support the involvement of sPLA2 in angiogenesis. It is proposed that sPLA2 inhibitor introduces a novel approach in the control of cancer development.
文摘The regulatory effects of phospholipase A2(PLA2) inhibitors, chloroquine and dexamethasone, on the activity of blood PLA2 and its related lipid mediators during endotoxic shock were observed in rabbits. The rabbits were randomized into 4 groups as follows : The normal control (NC) group consisted of 12 rabbits with sham injection . the endotoxic shork (ES) group of 31 rabbits, the chloquine pretreated (CQ) group of 16 rabbits receiving 3 mg/kg of chlorqouine and the dexamethasone-pretreated (DM) group of 10 rabbits receiving 5 mg/kg of dexamethasone. Blood was sampled before and 5 and 30 min, 1 ,3, 5 and 8 h after the administration of endotoxin for the determination of PLA2, platelet activating factor (PAF) , TXB2 and 6-keto-PGF1α. In addrtion, changes of mean arterial pressure (MAP) and respiratory rate (RR) were also carefully recorded. It was found that the activities of PLA2 and PAF and the levels of TXB2 and 6-keto-PGF1α. were significantly increased after the infusion of endotoxin. CQ and DM markedly suppressed the activities of PLA2 and PAF. The inhibition of CQ on TXB2 and 6-keto-PGF1α was greater than that of DM. Besides, CQ and DM could increase the survival rate of the animals from 48% to 75% (CQ group) and 70% (DM group). These findings suggest that PLA2 inhibitors such as CQ and DM can significantly attenuate the formation of shock mediators such as PLA2, PAF, TXB2 and 6-keto-PGF1α, and so improve the prognosis of the victims of endotoxic shock.
文摘Objective: To imastigate the effects of anisodamine on pulmonary α1- adrenergic receptor andphospholipase A, in acute lung injurg. Methods: Change of α1--adrenergic receptor (al AR ) in lung tissllesduring endotoxin--induced rat acute lung injury was measured with radioligand biding assay. The effects ofanisodamine on pulmonary α1--AR and phospholipase A2 (PLA2 ) were observed. Results: 1. 4 h after theendotoxin injection, there was a significant decrease in the maximal binding capacity of α1--AR by 34% ascompared with the control group. meanwhile elevated activity of PLA2 in rat lung and reduction of thephospholipids content of cell membrane was found. 2. Anisodamine could attenuate endotoxin--induced acutelung injury in rats. Conclusion: This effect might be related to anisodamine’s blockage of α1--AR andsuppression of PLA2, prevention of membranous phospholipids from degradation. and the reduction ofarachidonic acid release.