BACKGROUND The objective of the current study was to elucidate the clinical mechanism through which phospholipase D2(PLD2)exerted a regulatory effect on neutrophil migra-tion,thereby alleviating the progression of acu...BACKGROUND The objective of the current study was to elucidate the clinical mechanism through which phospholipase D2(PLD2)exerted a regulatory effect on neutrophil migra-tion,thereby alleviating the progression of acute pancreatitis.AIM To elucidate the clinical mechanism through which PLD2 exerted a regulatory effect on neutrophil migration,thereby alleviating the progression of acute pan-creatitis.METHODS The study involved 90 patients diagnosed with acute pancreatitis,admitted to our hospital between March 2020 and November 2022.A retrospective analysis was conducted,categorizing patients based on Ranson score severity into mild(n=25),moderate(n=30),and severe(n=35)groups.Relevant data was collected for each group.Western blot analysis assessed PLD2 protein expression in patient serum.Real-time reverse transcription polymerase chain reaction was used to evaluate the mRNA expression of chemokine receptors associated with neutrophil migration.Serum levels of inflammatory factors in patients were detected using enzyme-linked immunosorbent assay.Transwell migration tests were conducted to compare migration of neutrophils across groups and analyze the influence of PLD2 on neutrophil migration.RESULTS Overall data analysis did not find significant differences between patient groups(P>0.05).The expression of PLD2 protein in the severe group was lower than that in the moderate and mild groups(P<0.05).The expression level of PLD2 in the moderate group was also lower than that in the mild group(P<0.05).The severity of acute pancreatitis is negatively correlated with PLD2 expression(r=-0.75,P=0.002).The mRNA levels of C-X-C chemokine receptor type 1,C-X-C chemokine receptor type 2,C-C chemokine receptor type 2,and C-C chemokine receptor type 5 in the severe group are significantly higher than those in the moderate and mild groups(P<0.05),and the expression levels in the moderate group are also higher than those in the mild group(P<0.05).The levels of C-reactive protein,tumor necrosis factor-α,interleukin-1β,and interleukin-6 in the severe group were higher than those in the moderate and mild groups(P<0.05),and the levels in the moderate group were also higher than those in the mild group(P<0.05).The number of migrating neutrophils in the severe group was higher than that in the moderate and mild groups(P<0.05),and the moderate group was also higher than the mild group(P<0.05).In addition,the number of migrating neutrophils in the mild group combined with PLD2 inhibitor was higher than that in the mild group(P<0.05),and the number of migrating neutrophils in the moderate group combined with PLD2 inhibitor was higher than that in the moderate group(P<0.05).The number of migrating neutrophils in the severe group+PLD2 inhibitor group was significantly higher than that in the severe group(P<0.05),indicating that PLD2 inhibitors significantly stimulated neutrophil migration.CONCLUSION PLD2 exerted a crucial regulatory role in the pathological progression of acute pancreatitis.Its protein expression varied among patients based on the severity of the disease,and a negative correlation existed between PLD2 expression and disease severity.Additionally,PLD2 appeared to impede acute pancreatitis progression by limiting neutrophil migration.展开更多
Phosphatidylcholine-hydrolyzing phospholipase C (PC-PLC) catalyzes the hydrolysis of phosphatidylcholine (PC) to generate phosphocholine and diacylglycerol (DAG). PC-PLC has a long tradition in animal signal tra...Phosphatidylcholine-hydrolyzing phospholipase C (PC-PLC) catalyzes the hydrolysis of phosphatidylcholine (PC) to generate phosphocholine and diacylglycerol (DAG). PC-PLC has a long tradition in animal signal transduction to generate DAG as a second messenger besides the classical phosphatidylinositol splitting phospholipase C (PI-PLC). Based on amino acid sequence similarity to bacterial PC-PLC, six putative PC-PLC genes (NPC1 to NPC6) were identified in the Arabidopsis genome. RT-PCR analysis revealed overlapping expression pattern of NPC genes in root, stem, leaf, flower, and silique. In auxin-treated PNPc3:GUS and PNPc4:GUS seedlings, strong increase of GUS activity was visible in roots, leaves, and shoots and, to a weaker extent, in brassinolide-treated (BL) seedlings. PNPc4:GUS seedlings also responded to cytokinin with increased GUS activity in young leaves. Compared to wild-type, T-DNA insertional knockouts npc3 and npc4 showed shorter primary roots and lower lateral root density at low BL concentrations but increased lateral root densities in response to exogenous 0.05-1.0 I^M BL BL-induced expression of TCH4 and LRX2, which are involved in cell expansion, was impaired but not impaired in repression of CPD, a BL biosynthesis gene, in BL-treated npc3 and npc4. These observations suggest NPC3 and NPC4 are important in BL-mediated signaling in root growth. When treated with 0.1 I^M BL, DAG accumulation was observed in tobacco BY-2 cell cultures labeled with fluorescent PC as early as 15 min after application. We hypothesize that at least one PC-PLC is a plant signaling enzyme in BL signal transduction and, as shown earlier, in elicitor signal transduction.展开更多
Recent studies have revealed that lipid droplets accumulate in neurons after brain injury and evoke lipotoxicity,damaging the neurons.However,how lipids are metabolized by spinal cord neurons after spinal cord injury ...Recent studies have revealed that lipid droplets accumulate in neurons after brain injury and evoke lipotoxicity,damaging the neurons.However,how lipids are metabolized by spinal cord neurons after spinal cord injury remains unclear.Herein,we investigated lipid metabolism by spinal cord neurons after spinal cord injury and identified lipid-lowering compounds to treat spinal cord injury.We found that lipid droplets accumulated in perilesional spinal cord neurons after spinal cord injury in mice.Lipid droplet accumulation could be induced by myelin debris in HT22 cells.Myelin debris degradation by phospholipase led to massive free fatty acid production,which increased lipid droplet synthesis,β-oxidation,and oxidative phosphorylation.Excessive oxidative phosphorylation increased reactive oxygen species generation,which led to increased lipid peroxidation and HT22 cell apoptosis.Bromocriptine was identified as a lipid-lowering compound that inhibited phosphorylation of cytosolic phospholipase A2 by reducing the phosphorylation of extracellular signal-regulated kinases 1/2 in the mitogen-activated protein kinase pathway,thereby inhibiting myelin debris degradation by cytosolic phospholipase A2 and alleviating lipid droplet accumulation in myelin debris-treated HT22 cells.Motor function,lipid droplet accumulation in spinal cord neurons and neuronal survival were all improved in bromocriptine-treated mice after spinal cord injury.The results suggest that bromocriptine can protect neurons from lipotoxic damage after spinal cord injury via the extracellular signal-regulated kinases 1/2-cytosolic phospholipase A2 pathway.展开更多
BACKGROUND Patatin like phospholipase domain containing 8(PNPLA8)has been shown to play a significant role in various cancer entities.Previous studies have focused on its roles as an antioxidant and in lipid peroxidat...BACKGROUND Patatin like phospholipase domain containing 8(PNPLA8)has been shown to play a significant role in various cancer entities.Previous studies have focused on its roles as an antioxidant and in lipid peroxidation.However,the role of PNPLA8 in colorectal cancer(CRC)progression is unclear.AIM To explore the prognostic effects of PNPLA8 expression in CRC.METHODS A retrospective cohort containing 751 consecutive CRC patients was enrolled.PNPLA8 expression in tumor samples was evaluated by immunohistochemistry staining and semi-quantitated with immunoreactive scores.CRC patients were divided into high and low PNPLA8 expression groups based on the cut-off va-lues,which were calculated by X-tile software.The prognostic value of PNPLA8 was identified using univariate and multivariate Cox regression analysis.The over-all survival(OS)rates of CRC patients in the study cohort were compared with Kaplan-Meier analysis and Log-rank test.RESULTS PNPLA8 expression was significantly associated with distant metastases in our cohort(P=0.048).CRC patients with high PNPLA8 expression indicated poor OS(median OS=35.3,P=0.005).CRC patients with a higher PNPLA8 expression at either stage I and II or stage III and IV had statistically significant shorter OS.For patients with left-sided colon and rectal cancer,the survival curves of two PN-PLA8-expression groups showed statistically significant differences.Multivariate analysis also confirmed that high PNPLA8 expression was an independent prog-nostic factor for overall survival(hazard ratio HR=1.328,95%CI:1.016-1.734,P=0.038).展开更多
In the face of increasingly serious environmental pollution,the health of human lung tissues is also facing serious threats.Mogroside IIE(M2E)is the main metabolite of sweetening agents mogrosides from the anti-tussiv...In the face of increasingly serious environmental pollution,the health of human lung tissues is also facing serious threats.Mogroside IIE(M2E)is the main metabolite of sweetening agents mogrosides from the anti-tussive Chinese herbal Siraitia grosvenori.The study elucidated the anti-inflammatory action and molecular mechanism of M2E against acute lung injury(ALI).A lipopolysaccharide(LPS)-induced ALI model was established in mice and MH-S cells were employed to explore the protective mechanism of M2E through the western blotting,co-immunoprecipitation,and quantitative real time-PCR analysis.The results indicated that M2E alleviated LPS-induced lung injury through restraining the activation of secreted phospholipase A2 type IIA(Pla2g2a)-epidermal growth factor receptor(EGFR).The interaction of Pla2g2a and EGFR was identified by co-immunoprecipitation.In addition,M2E protected ALI induced with LPS against inflammatory and damage which were significantly dependent upon the downregulation of AKT and m TOR via the inhibition of Pla2g2a-EGFR.Pla2g2a may represent a potential target for M2E in the improvement of LPS-induced lung injury,which may represent a promising strategy to treat ALI.展开更多
Chagas disease (CD) affects 21 countries in the Americas and is caused by the parasite Trypanosoma cruzi. A key molecule involved in CD is lysophosphatidylcholine (LPC), which has been studied in various contexts: in ...Chagas disease (CD) affects 21 countries in the Americas and is caused by the parasite Trypanosoma cruzi. A key molecule involved in CD is lysophosphatidylcholine (LPC), which has been studied in various contexts: in the saliva of insect vectors, during the establishment of infection in the vertebrate host, and for the parasite itself. This lipid can be produced by the action of phospholipases A2 (PLA2), enzymes that catalyze the hydrolysis of phospholipids releasing fatty acids and lysophospholipids, such as LPC. This study investigates LPC levels and PLA2 activities in the plasma of CD patients and compares these levels with those in healthy individuals and patients with idiopathic dilated cardiomyopathy (IDCM). Plasma from 64 CD patients, 54 healthy individuals, and 16 IDCM patients were analyzed. LPC levels and the activity of two types of phospholipase A2: secreted (sPLA2) and lipoprotein-associated (Lp-PLA2) were measured. LPC levels and sPLA2 activity were similar between CD patients and the control groups. However, there were notable differences in LPC levels and sPLA2 activity between subgroups of CD patients and IDCM patients. This study is the first to identify LPC in patients with CD across various stages of the disease. It also offers new insights into the biochemical changes observed in the plasma of patients with IDCM.展开更多
BACKGROUND Genetic factors of chronic intestinal ulcers are increasingly garnering attention.We present a case of chronic intestinal ulcers and bleeding associated with mu-tations of the activin A receptor type II-lik...BACKGROUND Genetic factors of chronic intestinal ulcers are increasingly garnering attention.We present a case of chronic intestinal ulcers and bleeding associated with mu-tations of the activin A receptor type II-like 1(ACVRL1)and phospholipase A2 group IVA(PLA2G4A)genes and review the available relevant literature.CASE SUMMARY A 20-year-old man was admitted to our center with a 6-year history of recurrent abdominal pain,diarrhea,and dark stools.At the onset 6 years ago,the patient had received treatment at a local hospital for abdominal pain persisting for 7 d,under the diagnosis of diffuse peritonitis,acute gangrenous appendicitis with perforation,adhesive intestinal obstruction,and pelvic abscess.The surgical treat-ment included exploratory laparotomy,appendectomy,intestinal adhesiolysis,and pelvic abscess removal.The patient’s condition improved and he was dis-charged.However,the recurrent episodes of abdominal pain and passage of black stools started again one year after discharge.On the basis of these features and results of subsequent colonoscopy,the clinical diagnosis was established as in-flammatory bowel disease(IBD).Accordingly,aminosalicylic acid,immunotherapy,and related symptomatic treatment were administered,but the symptoms of the patient did not improve significantly.Further investigations revealed mutations in the ACVRL1 and PLA2G4A genes.ACVRL1 and PLA2G4A are involved in angiogenesis and coagulation,respectively.This suggests that the chronic intestinal ulcers and bleeding in this case may be linked to mutations in the ACVRL1 and PLA2G4A genes.Oral Kangfuxin liquid was administered to promote healing of the intestinal mucosa and effectively manage clinical symptoms.CONCLUSION Mutations in the ACVRL1 and PLA2G4A genes may be one of the causes of chronic intestinal ulcers and bleeding in IBD.Orally administered Kangfuxin liquid may have therapeutic potential.展开更多
Phospholipase A2 (PLA2) is the key enzyme to the venom from Deinagkistrodon acutus which is one of the highly venomous snakes in China. In addition to being a catalyst for the hydrolysis of phospholipases A2 from snak...Phospholipase A2 (PLA2) is the key enzyme to the venom from Deinagkistrodon acutus which is one of the highly venomous snakes in China. In addition to being a catalyst for the hydrolysis of phospholipases A2 from snake venom, its well known that it possesses a broad spectrum of pharmacological activities, such as myotoxicity, neurotoxicity, cardiotoxicity, and hemolytic, anticoagulant and antiplatelet activities. However, snakebites are not efficiently treated by conventional serum therapy. Acute wounds can still cause poisoning and death. In order to find effective inhibitors of Deinagkistrodon venom acid phospholipase A2 (dPLA2), we obtained 385 compounds in 9 Chinese herbs from the TCMSP. These compounds were further performed to virtual screen using in silico tools like ADMET analysis, molecular docking and molecular dynamics (MD) simulation. After Pharmacokinetics analysis, we found 7 candidate compounds. Besides, analysis of small molecule interactions with dPLA2 confirmed that the amino acid residues HIS47 and GLY29 are key targets. Because they bind not only to the natural substrate phosphatidylcholine and compounds known for having inhibitory functions, but also for combining with potential antidote molecules in Chinese herbal medicine. This study is the first to report experience with virtual screening for possible inhibitor of dPLA2, such as the interaction spatial structure, binding energy and binding interaction analysis, these experiences not only provide reference for further experimental research, but also have a guideline for the study of drug molecular mechanism of action.展开更多
Objective: In folk and TCM clinical medicine, Chinese herbal medicine is used to treat snakebite and has good curative effect, but its active ingredients and mechanism are still unclear. In this study, virtual screeni...Objective: In folk and TCM clinical medicine, Chinese herbal medicine is used to treat snakebite and has good curative effect, but its active ingredients and mechanism are still unclear. In this study, virtual screening and mechanism analysis of effective components from 6 Chinese herbs to inhibit phospholipase A2 of Deinagkistrodon acutus (dPLA2) venom were conducted. Methods: With advanced computing software AutoDock, Pymol and GROMACS, the molecules selected from the Chinese herbal Medicine Chemical Composition databas6e (TCMSP) were docked with the dPLA2 from the protein database (PDB). Further molecular dynamics simulation was used to evaluate the molecular binding stability. Results: Four potential dPLA2-inhibiting molecules were screened: lobelanidine, lobeline, norlobelanine and pratensein, by analyzing the spatial structure, binding energy and binding interaction of small molecular-dPLA2 complexes, as well as the RMSD and RMSF of molecular dynamics simulation. Conclusion: To our knowledge, this is the first report of lobeline has an inhibitory effect on dPLA2, and lobelanidine, as a precursor of lobeline, has a stronger inhibitory effect. According to the docking results, it is speculated that the mechanism of action of the four molecules is to form stable interactions with calcium ions and amino acid residues on the calcium ion binding ring in dPLA2. Moreover, these small molecules compete with phosphatidylcholine (the natural substrate of dPLA2) to bind dPLA2 and have a higher affinity than phosphatidylcholine, resulting in inhibition of dPLA2 activity.展开更多
研究背景力学门控性离子通道(mechanogated ion channels),又称为力学敏感性离子通道(mechanosensitive ion channels,MSIC),是心肌细胞的力学感受器之一。MSIC在心脏受到力学超负荷后电生理改变过程中起主要作用,可能是心肌细胞肥...研究背景力学门控性离子通道(mechanogated ion channels),又称为力学敏感性离子通道(mechanosensitive ion channels,MSIC),是心肌细胞的力学感受器之一。MSIC在心脏受到力学超负荷后电生理改变过程中起主要作用,可能是心肌细胞肥大过程中,力学负荷与蛋白质合成之间信号传导的一条重要通路。瞬时感受器电位(Transient receptor potential,TRP)离子通道C亚族(TRPC)蛋白TRPC1、C6对于心肌细胞适应生物力学刺激很重要,其表达上调会导致病理性心肌肥大及心衰<sup>[1-3]</sup>。TRPC通道不仅可被G蛋白耦联受体下游的磷脂酶C(phospholipase C,PLC)、二脂酰甘油(diacylglycerol,DAG)等信号分子继发激活,TRPC1、C6等可能还是力学敏感的离子通道,展开更多
Objective To survey changes and the significance of phospholipase A_2(PLA_2) on brain tissue of SD rat in acute pancreatitis.Methods With retrograde injection of 3% taurocholate sodium into pancreatic and biliary duct...Objective To survey changes and the significance of phospholipase A_2(PLA_2) on brain tissue of SD rat in acute pancreatitis.Methods With retrograde injection of 3% taurocholate sodium into pancreatic and biliary duct,rat model of severe acute pancreatitis(SAP) was made,and it included four groups: the control group,the sham-operation group, the SAP group and the PLA_2 inhibitor-treated group of SAP.Serum amylases,PLA_2 and PLA_2 in brain tissue were measured and the brain tissue changes were observed.Results There were no significant difference in serum amylases, PLA_2 and PLA_2 in brain tissue between the sham-operation and the control groups;the levels of serum amylases,PLA_2 and PLA_2 in brain tissue in the SAP group were higher than those in the control.In the SAP group expansion and hemorrhage of meninges,intracephalic arteriolar hyperemia,in meninges and cephalic-parenchyma infiltration of inflammatory cells and interval broaden were observed,significant differences were found between two groups.Compared with the SAP group,the level of serum amylase,PLA_2 and PLA_2 in brain tissue were reduced significantly in the treatment group of SAP.Pathological damages in the treatment group were significantly reduced when compared with the SAP group.Conclusion PLA_2 might play an important role in brain tissue damages in severe acute pancreatitis.展开更多
Atherosclerosis manifests itself clinically at advanced stages when plaques undergo hemorrhage and/or rupture with superimposed thrombosis, thus abruptly stopping blood supply. Identification of markers of plaque dest...Atherosclerosis manifests itself clinically at advanced stages when plaques undergo hemorrhage and/or rupture with superimposed thrombosis, thus abruptly stopping blood supply. Identification of markers of plaque destabilization at a pre-clinical stage is, therefore, a major goal of cardiovascular research. Promising results along this line were provided by studies investigating the lipoprotein-associated phospholipase A2(Lp-PLA2), a member of phospholipase A2 proteins family that plays a key role in the metabolism of pro-inflammatory phospholipids, as oxidized low-density lipoproteins, and in the generation of pro-atherogenic metabolites, including lysophosphatidylcholine and oxidized free fatty acids. We herein review the experimental and clinical studies supporting use of Lp-PLA2 activity for predicting cardiovascular events. To his end we considered not only Lp-PLA2 activity and mass, but also Lp-PLA2 gene variations and their association with incident coronary artery disease, stroke, and cardiovascular mortality. Based on these evidences the major scientific societies have included in their guidelines the measurement of Lp-PLA2 activity among the biomarkers that are useful in risk stratification of adult asymptomatic patients at intermediate cardiovascular risk. The results of two recently published major clinical trials with the LpPLA2 inhibitor darapladib, which seem to challenge the pathogenic role of Lp-PLA2, will also be discussed.展开更多
Hepatocellular carcinoma(HCC) is the fourth cause of cancer related mortality, and its incidence is rapidly increasing. Viral hepatitis, alcohol abuse, and exposure to hepatotoxins are major risk factors, but nonalcoh...Hepatocellular carcinoma(HCC) is the fourth cause of cancer related mortality, and its incidence is rapidly increasing. Viral hepatitis, alcohol abuse, and exposure to hepatotoxins are major risk factors, but nonalcoholic fatty liver disease(NAFLD) associated with obesity, insulin resistance, and type 2 diabetes, is an increasingly recognized trigger, especially in developed countries. Older age, severity of insulin resistance and diabetes, and iron overload have been reported to predispose to HCC in this context. Remarkably, HCCs have been reported in non-cirrhotic livers in a higher proportion of cases in NAFLD patients than in other etiologies. Inherited factors have also been implicated to explain the different individual susceptibility to develop HCC, and their role seems magnified in fatty liver, where only a minority of affected subjects progresses to cancer. In particular, the common I148 M variant of the PNPLA3 gene influencing hepatic lipid metabolism influences HCC risk independently of its effect on the progression of liver fibrosis. Recently, rare loss-of-function mutations in Apolipoprotein B resulting in very low density lipoproteins hepatic retention and in Telomerase reverse transcriptase influencing cellular senescence have also been linked to HCC in NAFLD. Indeed, hepatic stellate cells senescence has been suggested to bridge tissue aging with alterations of the intestinal microbiota in the pathogenesis of obesity-related HCC. A deeper understanding of the mechanisms mediating hepatic carcinogenesis during insulin resistance, and the identification of its genetic determinants will hopefully provide new diagnostic and therapeutic tools.展开更多
AIM:To explore the relationship between gastric and intestinal microcirculatory impairment and inflammatory mediators released in rats with acute necrotizing pancreatitis (ANP). METHODS: A total of 64 rats were random...AIM:To explore the relationship between gastric and intestinal microcirculatory impairment and inflammatory mediators released in rats with acute necrotizing pancreatitis (ANP). METHODS: A total of 64 rats were randomized into control group and ANP group. ANP model was induced by injection of 5% sodium taurocholate under the pancreatic membrane. Radioactive biomicrosphere technique was used to measure the gastric and intestinal tissue blood flow at 2 and 12 h after the induction of ANP, meanwhile serum phospholipase A2 (PLA2) activities and interleukin-1β levels were determined. Pathologic changes in pancreas, gastric and intestinal mucosae were studied. RESULTS: The gastric blood flow in ANP group (0.62±0.06 and 0.35±0.05) mL/(min·g) was significantly lower than that in control group (0.86±0.11 and 0.85±0.06) mL/(min·g) (P<0.01) at 2 and 12 h after induction of ANP. The intestinal blood flow in ANP group (0.80±0.07 and 0.50±0.06) mlV(min·g) was significantly lower than that in control group (1.56±0.18 and 1.61±0.11) mL/(min·g) (P<0.01). Serum PLA2 activities (94.29±9.96 and 103.71± 14.40) U/L and IL-1β levels (0.78±0.13 and 0.83±0.20)μg/L in ANP group were higher than those in control group (65.27±10.52 and 66.63±9.81) U/L, (0.32±0.06 and 0.33±0.07)μg/L (P<0.01). At 2 and 12 h after introduction of the model, typical pathologic changes were found in ANP. Compared with control group, the gastric and intestinal mucosal pathologic changes were aggravated significantly (P<0.01) at 12 h after induction of ANP. Gastric and intestinal mucosal necrosis, multiple ulcer and hemorrhage occurred. CONCLUSION: Decrease of gastric and intestinal blood flow and increase of inflammatory mediators occur simultaneously early in ANP, both of them are important pathogenic factors for gastric and intestinal mucosal injury in ANP.展开更多
文摘BACKGROUND The objective of the current study was to elucidate the clinical mechanism through which phospholipase D2(PLD2)exerted a regulatory effect on neutrophil migra-tion,thereby alleviating the progression of acute pancreatitis.AIM To elucidate the clinical mechanism through which PLD2 exerted a regulatory effect on neutrophil migration,thereby alleviating the progression of acute pan-creatitis.METHODS The study involved 90 patients diagnosed with acute pancreatitis,admitted to our hospital between March 2020 and November 2022.A retrospective analysis was conducted,categorizing patients based on Ranson score severity into mild(n=25),moderate(n=30),and severe(n=35)groups.Relevant data was collected for each group.Western blot analysis assessed PLD2 protein expression in patient serum.Real-time reverse transcription polymerase chain reaction was used to evaluate the mRNA expression of chemokine receptors associated with neutrophil migration.Serum levels of inflammatory factors in patients were detected using enzyme-linked immunosorbent assay.Transwell migration tests were conducted to compare migration of neutrophils across groups and analyze the influence of PLD2 on neutrophil migration.RESULTS Overall data analysis did not find significant differences between patient groups(P>0.05).The expression of PLD2 protein in the severe group was lower than that in the moderate and mild groups(P<0.05).The expression level of PLD2 in the moderate group was also lower than that in the mild group(P<0.05).The severity of acute pancreatitis is negatively correlated with PLD2 expression(r=-0.75,P=0.002).The mRNA levels of C-X-C chemokine receptor type 1,C-X-C chemokine receptor type 2,C-C chemokine receptor type 2,and C-C chemokine receptor type 5 in the severe group are significantly higher than those in the moderate and mild groups(P<0.05),and the expression levels in the moderate group are also higher than those in the mild group(P<0.05).The levels of C-reactive protein,tumor necrosis factor-α,interleukin-1β,and interleukin-6 in the severe group were higher than those in the moderate and mild groups(P<0.05),and the levels in the moderate group were also higher than those in the mild group(P<0.05).The number of migrating neutrophils in the severe group was higher than that in the moderate and mild groups(P<0.05),and the moderate group was also higher than the mild group(P<0.05).In addition,the number of migrating neutrophils in the mild group combined with PLD2 inhibitor was higher than that in the mild group(P<0.05),and the number of migrating neutrophils in the moderate group combined with PLD2 inhibitor was higher than that in the moderate group(P<0.05).The number of migrating neutrophils in the severe group+PLD2 inhibitor group was significantly higher than that in the severe group(P<0.05),indicating that PLD2 inhibitors significantly stimulated neutrophil migration.CONCLUSION PLD2 exerted a crucial regulatory role in the pathological progression of acute pancreatitis.Its protein expression varied among patients based on the severity of the disease,and a negative correlation existed between PLD2 expression and disease severity.Additionally,PLD2 appeared to impede acute pancreatitis progression by limiting neutrophil migration.
文摘Phosphatidylcholine-hydrolyzing phospholipase C (PC-PLC) catalyzes the hydrolysis of phosphatidylcholine (PC) to generate phosphocholine and diacylglycerol (DAG). PC-PLC has a long tradition in animal signal transduction to generate DAG as a second messenger besides the classical phosphatidylinositol splitting phospholipase C (PI-PLC). Based on amino acid sequence similarity to bacterial PC-PLC, six putative PC-PLC genes (NPC1 to NPC6) were identified in the Arabidopsis genome. RT-PCR analysis revealed overlapping expression pattern of NPC genes in root, stem, leaf, flower, and silique. In auxin-treated PNPc3:GUS and PNPc4:GUS seedlings, strong increase of GUS activity was visible in roots, leaves, and shoots and, to a weaker extent, in brassinolide-treated (BL) seedlings. PNPc4:GUS seedlings also responded to cytokinin with increased GUS activity in young leaves. Compared to wild-type, T-DNA insertional knockouts npc3 and npc4 showed shorter primary roots and lower lateral root density at low BL concentrations but increased lateral root densities in response to exogenous 0.05-1.0 I^M BL BL-induced expression of TCH4 and LRX2, which are involved in cell expansion, was impaired but not impaired in repression of CPD, a BL biosynthesis gene, in BL-treated npc3 and npc4. These observations suggest NPC3 and NPC4 are important in BL-mediated signaling in root growth. When treated with 0.1 I^M BL, DAG accumulation was observed in tobacco BY-2 cell cultures labeled with fluorescent PC as early as 15 min after application. We hypothesize that at least one PC-PLC is a plant signaling enzyme in BL signal transduction and, as shown earlier, in elicitor signal transduction.
基金supported by the National Natural Science Foundation of China,Nos.82071376(to ZC)and 82001471(to CJ)the Natural Science Foundation of Shanghai,No.20ZR1410500(to ZC).
文摘Recent studies have revealed that lipid droplets accumulate in neurons after brain injury and evoke lipotoxicity,damaging the neurons.However,how lipids are metabolized by spinal cord neurons after spinal cord injury remains unclear.Herein,we investigated lipid metabolism by spinal cord neurons after spinal cord injury and identified lipid-lowering compounds to treat spinal cord injury.We found that lipid droplets accumulated in perilesional spinal cord neurons after spinal cord injury in mice.Lipid droplet accumulation could be induced by myelin debris in HT22 cells.Myelin debris degradation by phospholipase led to massive free fatty acid production,which increased lipid droplet synthesis,β-oxidation,and oxidative phosphorylation.Excessive oxidative phosphorylation increased reactive oxygen species generation,which led to increased lipid peroxidation and HT22 cell apoptosis.Bromocriptine was identified as a lipid-lowering compound that inhibited phosphorylation of cytosolic phospholipase A2 by reducing the phosphorylation of extracellular signal-regulated kinases 1/2 in the mitogen-activated protein kinase pathway,thereby inhibiting myelin debris degradation by cytosolic phospholipase A2 and alleviating lipid droplet accumulation in myelin debris-treated HT22 cells.Motor function,lipid droplet accumulation in spinal cord neurons and neuronal survival were all improved in bromocriptine-treated mice after spinal cord injury.The results suggest that bromocriptine can protect neurons from lipotoxic damage after spinal cord injury via the extracellular signal-regulated kinases 1/2-cytosolic phospholipase A2 pathway.
基金This study was approved by the Clinical Research Ethics Committee of Zhongshan Hospital,Fudan University.
文摘BACKGROUND Patatin like phospholipase domain containing 8(PNPLA8)has been shown to play a significant role in various cancer entities.Previous studies have focused on its roles as an antioxidant and in lipid peroxidation.However,the role of PNPLA8 in colorectal cancer(CRC)progression is unclear.AIM To explore the prognostic effects of PNPLA8 expression in CRC.METHODS A retrospective cohort containing 751 consecutive CRC patients was enrolled.PNPLA8 expression in tumor samples was evaluated by immunohistochemistry staining and semi-quantitated with immunoreactive scores.CRC patients were divided into high and low PNPLA8 expression groups based on the cut-off va-lues,which were calculated by X-tile software.The prognostic value of PNPLA8 was identified using univariate and multivariate Cox regression analysis.The over-all survival(OS)rates of CRC patients in the study cohort were compared with Kaplan-Meier analysis and Log-rank test.RESULTS PNPLA8 expression was significantly associated with distant metastases in our cohort(P=0.048).CRC patients with high PNPLA8 expression indicated poor OS(median OS=35.3,P=0.005).CRC patients with a higher PNPLA8 expression at either stage I and II or stage III and IV had statistically significant shorter OS.For patients with left-sided colon and rectal cancer,the survival curves of two PN-PLA8-expression groups showed statistically significant differences.Multivariate analysis also confirmed that high PNPLA8 expression was an independent prog-nostic factor for overall survival(hazard ratio HR=1.328,95%CI:1.016-1.734,P=0.038).
基金the National Natural Science Foundation(81773982,82003937)Youth Academic leaders of the Qinglan Project in Jiangsu province for financial support。
文摘In the face of increasingly serious environmental pollution,the health of human lung tissues is also facing serious threats.Mogroside IIE(M2E)is the main metabolite of sweetening agents mogrosides from the anti-tussive Chinese herbal Siraitia grosvenori.The study elucidated the anti-inflammatory action and molecular mechanism of M2E against acute lung injury(ALI).A lipopolysaccharide(LPS)-induced ALI model was established in mice and MH-S cells were employed to explore the protective mechanism of M2E through the western blotting,co-immunoprecipitation,and quantitative real time-PCR analysis.The results indicated that M2E alleviated LPS-induced lung injury through restraining the activation of secreted phospholipase A2 type IIA(Pla2g2a)-epidermal growth factor receptor(EGFR).The interaction of Pla2g2a and EGFR was identified by co-immunoprecipitation.In addition,M2E protected ALI induced with LPS against inflammatory and damage which were significantly dependent upon the downregulation of AKT and m TOR via the inhibition of Pla2g2a-EGFR.Pla2g2a may represent a potential target for M2E in the improvement of LPS-induced lung injury,which may represent a promising strategy to treat ALI.
文摘Chagas disease (CD) affects 21 countries in the Americas and is caused by the parasite Trypanosoma cruzi. A key molecule involved in CD is lysophosphatidylcholine (LPC), which has been studied in various contexts: in the saliva of insect vectors, during the establishment of infection in the vertebrate host, and for the parasite itself. This lipid can be produced by the action of phospholipases A2 (PLA2), enzymes that catalyze the hydrolysis of phospholipids releasing fatty acids and lysophospholipids, such as LPC. This study investigates LPC levels and PLA2 activities in the plasma of CD patients and compares these levels with those in healthy individuals and patients with idiopathic dilated cardiomyopathy (IDCM). Plasma from 64 CD patients, 54 healthy individuals, and 16 IDCM patients were analyzed. LPC levels and the activity of two types of phospholipase A2: secreted (sPLA2) and lipoprotein-associated (Lp-PLA2) were measured. LPC levels and sPLA2 activity were similar between CD patients and the control groups. However, there were notable differences in LPC levels and sPLA2 activity between subgroups of CD patients and IDCM patients. This study is the first to identify LPC in patients with CD across various stages of the disease. It also offers new insights into the biochemical changes observed in the plasma of patients with IDCM.
基金Supported by the Science and Technology Research Foundation of Guizhou Province,No.QKHJC-ZK[2022]YB642Science and Technology Research Foundation of Hubei Province,No.2022BCE030+2 种基金Science and Technology Research Foundation of Zunyi City,No.ZSKH-HZ(2022)344Research Project on Traditional Chinese Medicine and Ethnic Medicine Science and Technology of Guizhou Provincial Administration of Traditional Chinese Medicine,No.QZYY-2023-021Science and Technology Research Foundation of Bijie City,No.BKH[2022]8.
文摘BACKGROUND Genetic factors of chronic intestinal ulcers are increasingly garnering attention.We present a case of chronic intestinal ulcers and bleeding associated with mu-tations of the activin A receptor type II-like 1(ACVRL1)and phospholipase A2 group IVA(PLA2G4A)genes and review the available relevant literature.CASE SUMMARY A 20-year-old man was admitted to our center with a 6-year history of recurrent abdominal pain,diarrhea,and dark stools.At the onset 6 years ago,the patient had received treatment at a local hospital for abdominal pain persisting for 7 d,under the diagnosis of diffuse peritonitis,acute gangrenous appendicitis with perforation,adhesive intestinal obstruction,and pelvic abscess.The surgical treat-ment included exploratory laparotomy,appendectomy,intestinal adhesiolysis,and pelvic abscess removal.The patient’s condition improved and he was dis-charged.However,the recurrent episodes of abdominal pain and passage of black stools started again one year after discharge.On the basis of these features and results of subsequent colonoscopy,the clinical diagnosis was established as in-flammatory bowel disease(IBD).Accordingly,aminosalicylic acid,immunotherapy,and related symptomatic treatment were administered,but the symptoms of the patient did not improve significantly.Further investigations revealed mutations in the ACVRL1 and PLA2G4A genes.ACVRL1 and PLA2G4A are involved in angiogenesis and coagulation,respectively.This suggests that the chronic intestinal ulcers and bleeding in this case may be linked to mutations in the ACVRL1 and PLA2G4A genes.Oral Kangfuxin liquid was administered to promote healing of the intestinal mucosa and effectively manage clinical symptoms.CONCLUSION Mutations in the ACVRL1 and PLA2G4A genes may be one of the causes of chronic intestinal ulcers and bleeding in IBD.Orally administered Kangfuxin liquid may have therapeutic potential.
文摘Phospholipase A2 (PLA2) is the key enzyme to the venom from Deinagkistrodon acutus which is one of the highly venomous snakes in China. In addition to being a catalyst for the hydrolysis of phospholipases A2 from snake venom, its well known that it possesses a broad spectrum of pharmacological activities, such as myotoxicity, neurotoxicity, cardiotoxicity, and hemolytic, anticoagulant and antiplatelet activities. However, snakebites are not efficiently treated by conventional serum therapy. Acute wounds can still cause poisoning and death. In order to find effective inhibitors of Deinagkistrodon venom acid phospholipase A2 (dPLA2), we obtained 385 compounds in 9 Chinese herbs from the TCMSP. These compounds were further performed to virtual screen using in silico tools like ADMET analysis, molecular docking and molecular dynamics (MD) simulation. After Pharmacokinetics analysis, we found 7 candidate compounds. Besides, analysis of small molecule interactions with dPLA2 confirmed that the amino acid residues HIS47 and GLY29 are key targets. Because they bind not only to the natural substrate phosphatidylcholine and compounds known for having inhibitory functions, but also for combining with potential antidote molecules in Chinese herbal medicine. This study is the first to report experience with virtual screening for possible inhibitor of dPLA2, such as the interaction spatial structure, binding energy and binding interaction analysis, these experiences not only provide reference for further experimental research, but also have a guideline for the study of drug molecular mechanism of action.
文摘Objective: In folk and TCM clinical medicine, Chinese herbal medicine is used to treat snakebite and has good curative effect, but its active ingredients and mechanism are still unclear. In this study, virtual screening and mechanism analysis of effective components from 6 Chinese herbs to inhibit phospholipase A2 of Deinagkistrodon acutus (dPLA2) venom were conducted. Methods: With advanced computing software AutoDock, Pymol and GROMACS, the molecules selected from the Chinese herbal Medicine Chemical Composition databas6e (TCMSP) were docked with the dPLA2 from the protein database (PDB). Further molecular dynamics simulation was used to evaluate the molecular binding stability. Results: Four potential dPLA2-inhibiting molecules were screened: lobelanidine, lobeline, norlobelanine and pratensein, by analyzing the spatial structure, binding energy and binding interaction of small molecular-dPLA2 complexes, as well as the RMSD and RMSF of molecular dynamics simulation. Conclusion: To our knowledge, this is the first report of lobeline has an inhibitory effect on dPLA2, and lobelanidine, as a precursor of lobeline, has a stronger inhibitory effect. According to the docking results, it is speculated that the mechanism of action of the four molecules is to form stable interactions with calcium ions and amino acid residues on the calcium ion binding ring in dPLA2. Moreover, these small molecules compete with phosphatidylcholine (the natural substrate of dPLA2) to bind dPLA2 and have a higher affinity than phosphatidylcholine, resulting in inhibition of dPLA2 activity.
文摘研究背景力学门控性离子通道(mechanogated ion channels),又称为力学敏感性离子通道(mechanosensitive ion channels,MSIC),是心肌细胞的力学感受器之一。MSIC在心脏受到力学超负荷后电生理改变过程中起主要作用,可能是心肌细胞肥大过程中,力学负荷与蛋白质合成之间信号传导的一条重要通路。瞬时感受器电位(Transient receptor potential,TRP)离子通道C亚族(TRPC)蛋白TRPC1、C6对于心肌细胞适应生物力学刺激很重要,其表达上调会导致病理性心肌肥大及心衰<sup>[1-3]</sup>。TRPC通道不仅可被G蛋白耦联受体下游的磷脂酶C(phospholipase C,PLC)、二脂酰甘油(diacylglycerol,DAG)等信号分子继发激活,TRPC1、C6等可能还是力学敏感的离子通道,
文摘Objective To survey changes and the significance of phospholipase A_2(PLA_2) on brain tissue of SD rat in acute pancreatitis.Methods With retrograde injection of 3% taurocholate sodium into pancreatic and biliary duct,rat model of severe acute pancreatitis(SAP) was made,and it included four groups: the control group,the sham-operation group, the SAP group and the PLA_2 inhibitor-treated group of SAP.Serum amylases,PLA_2 and PLA_2 in brain tissue were measured and the brain tissue changes were observed.Results There were no significant difference in serum amylases, PLA_2 and PLA_2 in brain tissue between the sham-operation and the control groups;the levels of serum amylases,PLA_2 and PLA_2 in brain tissue in the SAP group were higher than those in the control.In the SAP group expansion and hemorrhage of meninges,intracephalic arteriolar hyperemia,in meninges and cephalic-parenchyma infiltration of inflammatory cells and interval broaden were observed,significant differences were found between two groups.Compared with the SAP group,the level of serum amylase,PLA_2 and PLA_2 in brain tissue were reduced significantly in the treatment group of SAP.Pathological damages in the treatment group were significantly reduced when compared with the SAP group.Conclusion PLA_2 might play an important role in brain tissue damages in severe acute pancreatitis.
基金Supported by FORICA(the FOundation for Advanced Research in Hypertension and Cardiovascular diseases,www.forica.it)
文摘Atherosclerosis manifests itself clinically at advanced stages when plaques undergo hemorrhage and/or rupture with superimposed thrombosis, thus abruptly stopping blood supply. Identification of markers of plaque destabilization at a pre-clinical stage is, therefore, a major goal of cardiovascular research. Promising results along this line were provided by studies investigating the lipoprotein-associated phospholipase A2(Lp-PLA2), a member of phospholipase A2 proteins family that plays a key role in the metabolism of pro-inflammatory phospholipids, as oxidized low-density lipoproteins, and in the generation of pro-atherogenic metabolites, including lysophosphatidylcholine and oxidized free fatty acids. We herein review the experimental and clinical studies supporting use of Lp-PLA2 activity for predicting cardiovascular events. To his end we considered not only Lp-PLA2 activity and mass, but also Lp-PLA2 gene variations and their association with incident coronary artery disease, stroke, and cardiovascular mortality. Based on these evidences the major scientific societies have included in their guidelines the measurement of Lp-PLA2 activity among the biomarkers that are useful in risk stratification of adult asymptomatic patients at intermediate cardiovascular risk. The results of two recently published major clinical trials with the LpPLA2 inhibitor darapladib, which seem to challenge the pathogenic role of Lp-PLA2, will also be discussed.
文摘Hepatocellular carcinoma(HCC) is the fourth cause of cancer related mortality, and its incidence is rapidly increasing. Viral hepatitis, alcohol abuse, and exposure to hepatotoxins are major risk factors, but nonalcoholic fatty liver disease(NAFLD) associated with obesity, insulin resistance, and type 2 diabetes, is an increasingly recognized trigger, especially in developed countries. Older age, severity of insulin resistance and diabetes, and iron overload have been reported to predispose to HCC in this context. Remarkably, HCCs have been reported in non-cirrhotic livers in a higher proportion of cases in NAFLD patients than in other etiologies. Inherited factors have also been implicated to explain the different individual susceptibility to develop HCC, and their role seems magnified in fatty liver, where only a minority of affected subjects progresses to cancer. In particular, the common I148 M variant of the PNPLA3 gene influencing hepatic lipid metabolism influences HCC risk independently of its effect on the progression of liver fibrosis. Recently, rare loss-of-function mutations in Apolipoprotein B resulting in very low density lipoproteins hepatic retention and in Telomerase reverse transcriptase influencing cellular senescence have also been linked to HCC in NAFLD. Indeed, hepatic stellate cells senescence has been suggested to bridge tissue aging with alterations of the intestinal microbiota in the pathogenesis of obesity-related HCC. A deeper understanding of the mechanisms mediating hepatic carcinogenesis during insulin resistance, and the identification of its genetic determinants will hopefully provide new diagnostic and therapeutic tools.
基金Supported by the Traditional Chinese Medicine Administration Bureau Foundation of Jiangsu Province,No.9965the Applied Basic Research Program of Science and Technology Commission Foundation of Jiangsu Province,No.BJ2000327
文摘AIM:To explore the relationship between gastric and intestinal microcirculatory impairment and inflammatory mediators released in rats with acute necrotizing pancreatitis (ANP). METHODS: A total of 64 rats were randomized into control group and ANP group. ANP model was induced by injection of 5% sodium taurocholate under the pancreatic membrane. Radioactive biomicrosphere technique was used to measure the gastric and intestinal tissue blood flow at 2 and 12 h after the induction of ANP, meanwhile serum phospholipase A2 (PLA2) activities and interleukin-1β levels were determined. Pathologic changes in pancreas, gastric and intestinal mucosae were studied. RESULTS: The gastric blood flow in ANP group (0.62±0.06 and 0.35±0.05) mL/(min·g) was significantly lower than that in control group (0.86±0.11 and 0.85±0.06) mL/(min·g) (P<0.01) at 2 and 12 h after induction of ANP. The intestinal blood flow in ANP group (0.80±0.07 and 0.50±0.06) mlV(min·g) was significantly lower than that in control group (1.56±0.18 and 1.61±0.11) mL/(min·g) (P<0.01). Serum PLA2 activities (94.29±9.96 and 103.71± 14.40) U/L and IL-1β levels (0.78±0.13 and 0.83±0.20)μg/L in ANP group were higher than those in control group (65.27±10.52 and 66.63±9.81) U/L, (0.32±0.06 and 0.33±0.07)μg/L (P<0.01). At 2 and 12 h after introduction of the model, typical pathologic changes were found in ANP. Compared with control group, the gastric and intestinal mucosal pathologic changes were aggravated significantly (P<0.01) at 12 h after induction of ANP. Gastric and intestinal mucosal necrosis, multiple ulcer and hemorrhage occurred. CONCLUSION: Decrease of gastric and intestinal blood flow and increase of inflammatory mediators occur simultaneously early in ANP, both of them are important pathogenic factors for gastric and intestinal mucosal injury in ANP.