A new economic and convenient method to modify the surface of microporous polypropylene (PP) membranes with phospholipid polymer was given. The process included the photo-irradiated graft polymerization of N,N-dimethy...A new economic and convenient method to modify the surface of microporous polypropylene (PP) membranes with phospholipid polymer was given. The process included the photo-irradiated graft polymerization of N,N-dimethylaminoethyl methacrylate (DMAEMA) and the ring-opening reaction of the grafted polyDMAEMA with 2-alkyloxy-2-oxide-1,3,2-dioxo-phospholanes (AOP). Four AOPs, whose alkyloxy groups consisted of dodecyl, tetradecyl, hexadecyl and octadecyl moieties, were used to convert the grafted polyDMAEMA to phospholipid polymers. FT-IR spectra confirmed the chemical change of membrane surface. Platelets adhesion experiment indicated that PP membrane with excellent blood compatible surface could be fabricated by this method.展开更多
文摘A new economic and convenient method to modify the surface of microporous polypropylene (PP) membranes with phospholipid polymer was given. The process included the photo-irradiated graft polymerization of N,N-dimethylaminoethyl methacrylate (DMAEMA) and the ring-opening reaction of the grafted polyDMAEMA with 2-alkyloxy-2-oxide-1,3,2-dioxo-phospholanes (AOP). Four AOPs, whose alkyloxy groups consisted of dodecyl, tetradecyl, hexadecyl and octadecyl moieties, were used to convert the grafted polyDMAEMA to phospholipid polymers. FT-IR spectra confirmed the chemical change of membrane surface. Platelets adhesion experiment indicated that PP membrane with excellent blood compatible surface could be fabricated by this method.