Contrast agents are attracting a great deal of attention in photoacoustic inaging.Here weintroduce an exogenous contrast agent that provides high photoacoustic signal amplitude at thenear-infrared wavelength._Our_agen...Contrast agents are attracting a great deal of attention in photoacoustic inaging.Here weintroduce an exogenous contrast agent that provides high photoacoustic signal amplitude at thenear-infrared wavelength._Our_agents consist_of Indocyanine green(ICG)and phospholi-pid-polyethylene glycol(PL-PEG),entitled ICG-PL-PEG nanoparticles,These nanoparticleshave overcome numerous limitations of ICG,such as poor aqueous stability,concentration-dependent aggregation and lack of target specificity.ICG-PL-PEG nanoparticles are bio-compatible and relatively nontoxic.All the components of ICG-PL-PEG nanoparticles havebeen approved for human use.Upon pulsed laser irradiation,the nanoparticles are more eficient inproducing photoacoustic waves than ICG alone.The results showed that ICG-PL-PEG nano-particles act as good contrast agents for photoacoustic imaging.These unique ICG-PL-PEGnanoparticles have great potential in clinical applications.展开更多
基金supported by the National Basic Research Program of China(2011CB910402,2010CB732602)the Program for Changjiang Scholars and Innovative Research Team in University(IRT0829)+3 种基金the National Natural Science Foun-dation of China(81127004,11104087)the Foum-dation for Distinguished Young Talents in Higher Education of Guangdong,China(LYM10061)the Specialized Research Fund for the Doctoral Programof Higher Education(20114407120001)the Sci-ence and Technology Project of Guangzhou,China(2012J4100114).
文摘Contrast agents are attracting a great deal of attention in photoacoustic inaging.Here weintroduce an exogenous contrast agent that provides high photoacoustic signal amplitude at thenear-infrared wavelength._Our_agents consist_of Indocyanine green(ICG)and phospholi-pid-polyethylene glycol(PL-PEG),entitled ICG-PL-PEG nanoparticles,These nanoparticleshave overcome numerous limitations of ICG,such as poor aqueous stability,concentration-dependent aggregation and lack of target specificity.ICG-PL-PEG nanoparticles are bio-compatible and relatively nontoxic.All the components of ICG-PL-PEG nanoparticles havebeen approved for human use.Upon pulsed laser irradiation,the nanoparticles are more eficient inproducing photoacoustic waves than ICG alone.The results showed that ICG-PL-PEG nano-particles act as good contrast agents for photoacoustic imaging.These unique ICG-PL-PEGnanoparticles have great potential in clinical applications.