Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects ...Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA.展开更多
The milk fat globule membrane(MFGM)is a complex structure with numerous functions,and its composition is affected by many factors.There have been few systematic investigations on goat MFGM proteome profiling during la...The milk fat globule membrane(MFGM)is a complex structure with numerous functions,and its composition is affected by many factors.There have been few systematic investigations on goat MFGM proteome profiling during lactation.Individual milk samples from 15 healthy dairy goats were obtained at six lactation time points for investigation of the MFGM proteome using both data-independent acquisition(DIA)and data-dependent acquisition(DDA)proteomics techniques combined with multivariate statistical analysis.Using the DIA method,890 variably abundant MFGM proteins were discovered throughout the lactation cycle.From 1 to 240 d,butyrophilin subfamily 1 member A1,lipoprotein lipase,perilipin-2,and adipose triglyceride lipase were upregulated,while APOE,complement C3,clusterin,and IgG were downregulated.Furthermore,from 1 to 90 d,annexin A1,annexin A2,and antithrombin-ll were downregulated,then upregulated by d 240.Albumin had a high degree of connectedness,indicating that it was a key protein,according to protein-protein interaction research.Overall,our findings gave new insights into the biological features of MFGM protein in goat milk throughout lactation,which may aid in the creation of specialized MFGM products and infant formula.展开更多
Milk fat globule membrane(MFGM)possesses various nutritional and biological benefits for mammals,whereas its effects on neonatal gut microbiota and barrier integrity remained unclear.This study investigated the effect...Milk fat globule membrane(MFGM)possesses various nutritional and biological benefits for mammals,whereas its effects on neonatal gut microbiota and barrier integrity remained unclear.This study investigated the effects of MFGM administration on microbial compositions and intestinal barrier functions of neonatal piglets.Sixteen newborn piglets were randomly allocated into a CON group or MFGM group,orally administered with saline or MFGM solution(1 g/kg body weight)respectively during the first postnatal week,and all piglets were breastfed during the whole neonatal period.The present study found that the MFGM oral administration during the first postnatal week increased the plasma immunoglobulin(lg)G level,body weight and average daily gain of piglets(P<0.05)on 21 d.Addi-tionally,MFGM administration enriched fecal SCFA-producing bacteria(Ruminococaceae_UCG-002,Ruminococaceae_UCG-010,Ruminococaceae_UCG-004,Ruminococaceae_UCG-014 and[Ruminococcus]_gauvrearuii_group),SCFA concentrations(acetate,propionate and butyrate;P<0.05)and their receptor(G-protein coupled receptor 41,GPR41).Furthermore,MFGM administration promoted intestinal villus morphology(P<0.05)and barrier functions by upregulating genes of tight junctions(E-cadherin,claudin-1,occludin and zonula occludin 1[ZO-1]),mucins(mucin-13 and mucin-20)and interleukin(IL)-22(P<0.05).Positive correlation was found between the beneficial microbes and SCFA levels pairwise with the intestinal barrier genes(P<0.05).In conclusion,orally administrating MFGM during the first postnatal week stimulated SCFA-producing bacteria colonization and SCFA generation,enhanced intes-tinal barrier functions and consequently improved growth performance of neonatal piglets on 21 d.Our findings will provide new insights about MFGM intervention for microbial colonization and intestinal development of neonates during their early life.展开更多
Background: Milk lipids originate from cytoplasmic lipid droplets(LD) that are synthesized and secreted from mammary epithelial cells by a unique membrane-envelopment process. Butyrophilin 1 A1(BTN1 A1) is one of the ...Background: Milk lipids originate from cytoplasmic lipid droplets(LD) that are synthesized and secreted from mammary epithelial cells by a unique membrane-envelopment process. Butyrophilin 1 A1(BTN1 A1) is one of the membrane proteins that surrounds LD, but its role in bovine mammary lipid droplet synthesis and secretion is not well known.Methods: The objective was to knockout BTN1 A1 in bovine mammary epithelial cells(BMEC) via the CRISPR/Cas9 system and evaluate LD formation, abundance of lipogenic enzymes, and content of cell membrane phospholipid(PL) species. Average LD diameter was determined via Oil Red O staining, and profiling of cell membrane phospholipid species via liquid chromatography-tandem mass spectrometry(LC-MS/MS).Results: Lentivirus-mediated infection of the Cas9/sg RNA expression vector into BMEC resulted in production of a homozygous clone BTN1 A1^((-/-)). The LD size and content decreased following BTN1 A1 gene knockout. The m RNA abundance of fatty acid synthase(FASN) and peroxisome proliferator-activated receptor-gamma(PPARG) was downregulated in the BTN1 A1^((-/-))clone. Subcellular analyses indicated that BTN1 A1 and LD were co-localized in the cytoplasm. BTN1 A1 gene knockout increased the percentage of phosphatidylethanolamine(PE) and decreased phosphatidylcholine(PC), which resulted in a lower PC/PE ratio.Conclusions: Results suggest that BTN1 A1 plays an important role in regulating LD synthesis via a mechanism involving membrane phospholipid composition.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1605000)National Natural Science Foundation of China(Grant No.31871806)the Beijing Livestock Industry Innovation Team(BAIC05-2023)。
文摘Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA.
基金This work was supportedby theNational KeyR&D Program of China(2022YFD1301005)the Shandong Provincial Natural Science Foundation,China(ZR2022MC184)the High-level Talents Foundation of Qingdao Agricultural University,China(665/1120053,665/1120080).
文摘The milk fat globule membrane(MFGM)is a complex structure with numerous functions,and its composition is affected by many factors.There have been few systematic investigations on goat MFGM proteome profiling during lactation.Individual milk samples from 15 healthy dairy goats were obtained at six lactation time points for investigation of the MFGM proteome using both data-independent acquisition(DIA)and data-dependent acquisition(DDA)proteomics techniques combined with multivariate statistical analysis.Using the DIA method,890 variably abundant MFGM proteins were discovered throughout the lactation cycle.From 1 to 240 d,butyrophilin subfamily 1 member A1,lipoprotein lipase,perilipin-2,and adipose triglyceride lipase were upregulated,while APOE,complement C3,clusterin,and IgG were downregulated.Furthermore,from 1 to 90 d,annexin A1,annexin A2,and antithrombin-ll were downregulated,then upregulated by d 240.Albumin had a high degree of connectedness,indicating that it was a key protein,according to protein-protein interaction research.Overall,our findings gave new insights into the biological features of MFGM protein in goat milk throughout lactation,which may aid in the creation of specialized MFGM products and infant formula.
基金the Beijing Municipal Natural Science Foundation(S170001)the National Natural Science Foundation of China(31630074,31902170,31972596 and 31902189)+2 种基金the National Key Research and Development Program of China(2016YFD0500506 and 2018YDF0501002)the Agriculture Research System of China(CARS-35)the Higher Education Discipline Innovation Project(B16044).
文摘Milk fat globule membrane(MFGM)possesses various nutritional and biological benefits for mammals,whereas its effects on neonatal gut microbiota and barrier integrity remained unclear.This study investigated the effects of MFGM administration on microbial compositions and intestinal barrier functions of neonatal piglets.Sixteen newborn piglets were randomly allocated into a CON group or MFGM group,orally administered with saline or MFGM solution(1 g/kg body weight)respectively during the first postnatal week,and all piglets were breastfed during the whole neonatal period.The present study found that the MFGM oral administration during the first postnatal week increased the plasma immunoglobulin(lg)G level,body weight and average daily gain of piglets(P<0.05)on 21 d.Addi-tionally,MFGM administration enriched fecal SCFA-producing bacteria(Ruminococaceae_UCG-002,Ruminococaceae_UCG-010,Ruminococaceae_UCG-004,Ruminococaceae_UCG-014 and[Ruminococcus]_gauvrearuii_group),SCFA concentrations(acetate,propionate and butyrate;P<0.05)and their receptor(G-protein coupled receptor 41,GPR41).Furthermore,MFGM administration promoted intestinal villus morphology(P<0.05)and barrier functions by upregulating genes of tight junctions(E-cadherin,claudin-1,occludin and zonula occludin 1[ZO-1]),mucins(mucin-13 and mucin-20)and interleukin(IL)-22(P<0.05).Positive correlation was found between the beneficial microbes and SCFA levels pairwise with the intestinal barrier genes(P<0.05).In conclusion,orally administrating MFGM during the first postnatal week stimulated SCFA-producing bacteria colonization and SCFA generation,enhanced intes-tinal barrier functions and consequently improved growth performance of neonatal piglets on 21 d.Our findings will provide new insights about MFGM intervention for microbial colonization and intestinal development of neonates during their early life.
基金supported by the National Natural Science Foundation of China (U1904116)Special Funds for Modern Agricultural Industry Technology System (CARS-37)+1 种基金National Key Research and Development Program of China (Beijing, China2016YFD0500503)。
文摘Background: Milk lipids originate from cytoplasmic lipid droplets(LD) that are synthesized and secreted from mammary epithelial cells by a unique membrane-envelopment process. Butyrophilin 1 A1(BTN1 A1) is one of the membrane proteins that surrounds LD, but its role in bovine mammary lipid droplet synthesis and secretion is not well known.Methods: The objective was to knockout BTN1 A1 in bovine mammary epithelial cells(BMEC) via the CRISPR/Cas9 system and evaluate LD formation, abundance of lipogenic enzymes, and content of cell membrane phospholipid(PL) species. Average LD diameter was determined via Oil Red O staining, and profiling of cell membrane phospholipid species via liquid chromatography-tandem mass spectrometry(LC-MS/MS).Results: Lentivirus-mediated infection of the Cas9/sg RNA expression vector into BMEC resulted in production of a homozygous clone BTN1 A1^((-/-)). The LD size and content decreased following BTN1 A1 gene knockout. The m RNA abundance of fatty acid synthase(FASN) and peroxisome proliferator-activated receptor-gamma(PPARG) was downregulated in the BTN1 A1^((-/-))clone. Subcellular analyses indicated that BTN1 A1 and LD were co-localized in the cytoplasm. BTN1 A1 gene knockout increased the percentage of phosphatidylethanolamine(PE) and decreased phosphatidylcholine(PC), which resulted in a lower PC/PE ratio.Conclusions: Results suggest that BTN1 A1 plays an important role in regulating LD synthesis via a mechanism involving membrane phospholipid composition.