Objective:To investigate the effects of stilbene glycoside(TSG)on okadaic acid-induced apoptosis in human neuroblastoma cells(SH-SY5Y)via the PI3K/AKT pathway.Methods:The optimal concentration of OA was screened by CC...Objective:To investigate the effects of stilbene glycoside(TSG)on okadaic acid-induced apoptosis in human neuroblastoma cells(SH-SY5Y)via the PI3K/AKT pathway.Methods:The optimal concentration of OA was screened by CCK-8 assay,and SH-SY5Y cells were divided into control group,model group,TSG group,LY294002 group and LY294002+TSG group.The proliferation and apoptosis in each group were detected by CCK-8 and TUNEL assays;Western blotting method and real-time fluorescence quantitative polymerase chain reaction was used to detect the expression of PI3K,P-PI3K(Y607),AKT,P-AKT(Ser473),Bcl-2 and Bax proteins.The relative protein expression was represented by P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax gray ratio.Results:CCK-8 screened the optimal concentration of OA as 40 nmol/L.Compared with the control group,the model group increased relative cell viability,decreased apoptosis rate,the pathway and apoptotic proteins expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax were decreased,and the mRNA expression levels of PI3K,AKT and Bcl-2 were decreased.Bax mRNA expression level increased(P<0.05);Compared with model group,TSG group increased relative cell viability,decreased apoptosis rate,increased protein expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT,Bcl-2/Bax,and increased mRNA expression levels of PI3K,AKT,and Bcl-2.Bax mRNA expression decreased(P<0.05),LY294002 group decreased relative cell viability,increased apoptosis rate,P-PI3K(Y607)/PI3K protein expression levels were significantly decreased(P<0.05),P-AKT(Ser473)/AKT and Bcl-2/Bax protein expression levels were significantly decreased,but there was no statistical significance,PI3K,AKT and Bcl-2 mRNA expression levels were decreased,and Bax mRNA expression levels were increased(all P<0.05);Compared with LY294002 group,LY294002+TSG group increased relative cell viability,decreased apoptosis rate,and the protein expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax were increased.The mRNA expression levels of PI3K,AKT,Bcl-2 were increased,Bax was decreased(all P<0.05).Conclusion:Stilbene glycoside may alleviate okadaic acid-induced apoptosis in SH-SY5Y cells by interfering with the PI3K/AKT signaling pathway,which in turn regulates the expression of apoptotic factors such as Bcl-2 and Bax.展开更多
Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K) plays an important role in signal transduction in animal cellsby phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4)...Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K) plays an important role in signal transduction in animal cellsby phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4). Both IP3 and IP4 arecritical second messengers which regulate calcium (Ca2+) homeostasis. Mammalian IP3Ks are involved in many biologicalprocesses, including brain development, memory, learning and so on. It is widely reported that Ca2+ is a canonicalsecond messenger in higher plants. Therefore, plant IP3K should also play a crucial role in plant development. Recently,we reported the identification of plant IP3K gene (AtIpk2β/AtIP3K) from Arabidopsis thaliana and its characterization.Here, we summarize the molecular cloning, biochemical properties and biological functions of IP3Ks from animal, yeastand plant. This review also discusses potential functions of IP3Ks in signaling crosstalk, inositol phosphate metabolism,gene transcriptional control and so on.展开更多
Much research has focused on the PI3-kinase and PTEN signaling pathway with the aim to stimulate repair of the injured central nervous system.Axons in the central nervous system fail to regenerate,meaning that injurie...Much research has focused on the PI3-kinase and PTEN signaling pathway with the aim to stimulate repair of the injured central nervous system.Axons in the central nervous system fail to regenerate,meaning that injuries or diseases that cause loss of axonal connectivity have life-changing consequences.In 2008,genetic deletion of PTEN was identified as a means of stimulating robust regeneration in the optic nerve.PTEN is a phosphatase that opposes the actions of PI3-kinase,a family of enzymes that function to generate the membrane phospholipid PIP_(3) from PIP_(2)(phosphatidylinositol(3,4,5)-trisphosphate from phosphatidylinositol(4,5)-bisphosphate).Deletion of PTEN therefore allows elevated signaling downstream of PI3-kinase,and was initially demonstrated to promote axon regeneration by signaling through mTOR.More recently,additional mechanisms have been identified that contribute to the neuron-intrinsic control of regenerative ability.This review describes neuronal signaling pathways downstream of PI3-kinase and PIP3,and considers them in relation to both developmental and regenerative axon growth.We briefly discuss the key neuron-intrinsic mechanisms that govern regenerative ability,and describe how these are affected by signaling through PI3-kinase.We highlight the recent finding of a developmental decline in the generation of PIP_(3) as a key reason for regenerative failure,and summarize the studies that target an increase in signaling downstream of PI3-kinase to facilitate regeneration in the adult central nervous system.Finally,we discuss obstacles that remain to be overcome in order to generate a robust strategy for repairing the injured central nervous system through manipulation of PI3-kinase signaling.展开更多
Our recent studies with cultured retinal pigment epithelium cells suggested that overexpression of interleukin 17 receptor C(IL-17RC),a phenomenon observed in peripheral blood and chorioretinal tissues with age-rela...Our recent studies with cultured retinal pigment epithelium cells suggested that overexpression of interleukin 17 receptor C(IL-17RC),a phenomenon observed in peripheral blood and chorioretinal tissues with age-related macular degeneration(AMD),was associated with altered activation of phosphatidylinositide 3-kinase(PI3K),Akt,and glycogen synthase kinase 3(GSK3).We wondered whether or not altered PI3 K,Akt,and GSK3 activities could be detected in peripheral blood mononuclear cells(PBMC) obtained from AMD patients.In the patients' PBMC,absent or reduced serine-phosphorylation of GSK3α or GSK3β was observed,which was accompanied with increased phosphorylation of GSK3 substrates(e.g.CCAAT enhancer binding protein a,insulin receptor substrate 1,and TAU),indicative of enhanced GSK3 activation.In addition,decreased protein mass of PI3K85α and tyrosinephosphorylation of PI3K50α was present in PBMC of the AMD patients,suggesting impaired PI3 K activation.Moreover,abnormally lowered molecular weight forms of Akt and GSK3 were detected in PBMC of the AMD patients.These data demonstrate that despite the presence of high levels of IL-17 RC,Wnt-3a and vascular endothelial growth factor,the PI3K/Akt/GSK3 signaling pathway is insensitive to these stimuli in PBMC of the AMD patients.Thus,measurement of PI3K/Akt/GSK3 expression and activity in PBMC may serve as a surrogate biomarker for AMD.展开更多
Objective: To investigate the effects of CAL-101, particularly when combined with bortezomib(BTZ) on mantle cell lymphoma(MCL) cells, and to explore its relative mechanisms.Methods: MTT assay was applied to detect the...Objective: To investigate the effects of CAL-101, particularly when combined with bortezomib(BTZ) on mantle cell lymphoma(MCL) cells, and to explore its relative mechanisms.Methods: MTT assay was applied to detect the inhibitory effects of different concentrations of CAL-101. MCL cells were divided into four groups: control group, CAL-101 group, BTZ group, and CAL-101/BTZ group. The expression of PI3K-p110σ, AKT, ERK, p-AKT and p-ERK were detected by Western blot. The apoptosis rates of CAL-101 group, BTZ group, and combination group were detected by flow cytometry. The location changes of nuclear factor kappa-B(NF-κB) of 4 groups was investigated by NF-κB Kit exploring. Western blot was applied to detect the levels of caspase-3 and the phosphorylation of AKT in different groups. Results: CAL-101 dose- and time-dependently induced reduction in MCL cell viability. CAL-101 combined with BTZ enhanced the reduction in cell viability and apoptosis. Western blot analysis showed that CAL-101 significantly blocked the PI3K/AKT and ERK signaling pathway in MCL cells. The combination therapy contributed to the inactivation of NF-κB and AKT in MCL cell lines. However, cleaved caspase-3 was up-regulated after combined treatment. Conclusion: Our study showed that PI3K/p110σ is a novel therapeutic target in MCL, and the underlying mechanism could be the blocking of the PI3K/AKT and ERK signaling pathways. These findings provided a basis for clinical evaluation of CAL-101 and a rationale for its application in combination therapy, particularly with BTZ.展开更多
[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signal...[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signaling pathway.[Methods]Sixty sexually mature female SD rats were irradiated with ^(60)Co-γ-ray(6.0 Gy,LD 40)for 24 h at one time.These rats were randomly divided into model group,Progynova group[0.18(g·kg)/d],Progynova[0.09(g·kg)/d]+Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill medium dose[9.45(g·kg)/d)]group and Zuogui Pill low dose[4.725(g·kg)/d]group.The administration(once a day)lasted 21 d.The rat serum[follicle-stimulating hormone(FSH),luteinizing hormone(LH)and estradiol(E_(2))]were detected by Enzyme-linked immunosorbent assay(ELISA).The morphological changes of ovary were observed by hematoxylin-eosin(HE)staining.The apoptosis rate of granulosa cells was detected by terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling(TUNEL).The protein expression of phosphorylated(p)-PI3K,p-Akt,p-mTOR,B-cell lymphoma-2(Bcl-2),and Bcl-2-associated X protein(Bax)in ovarian tissues were detected by Western blot.[Results]Compared with the normal group,the model group showed significant increase in the serum FSH(P<0.01),significant decrease in serum E_(2)(P<0.05),and decrease in the number of early follicles and luteum in the ovary(P<0.01).Besides,the apoptosis rate of granulosa cells increased significantly(P<0.01);the expression of p-PI3K,p-Akt,p-mTOR and Bcl-2 in ovarian tissue decreased significantly,while the expression of Bax increased significantly(P<0.01).Compared with the model group,the number of early follicles in the ovary increased and the apoptosis rate of granulosa cells decreased after intervention in each administration group.In addition,the protein expressions of p-PI3K,p-Akt,p-mTOR and Bcl-2 increased,while the expression of Bax decreased,especially in Progynova+Zuogui Pill high dose group,the differences were statistically significant(P<0.05,P<0.01).[Conclusions]Zuogui Pill may protect the radiation-injured ovary through activating the expression of PI3K/Akt/mTOR protein in ovarian tissue,increasing the amount of Bcl-2 protein and inhibiting the expression of Bax protein.展开更多
Objective To investigate the potential role of Tongxinluo(TXL)in attenuating myocardial fibrosis after myocardial ischemia-reperfusion injury(MIRI)in mice.Methods A MIRI mouse model was established by left anterior de...Objective To investigate the potential role of Tongxinluo(TXL)in attenuating myocardial fibrosis after myocardial ischemia-reperfusion injury(MIRI)in mice.Methods A MIRI mouse model was established by left anterior descending coronary artery ligation for 45 min.According to a random number table,66 mice were randomly divided into 6 groups(n=11 per group):the sham group,the model group,the LY-294002 group,the TXL group,the TXL+LY-294002 group and the benazepril(BNPL)group.The day after modeling,TXL and BNPL were administered by gavage.Intraperitoneal injection of LY-294002 was performed twice a week for 4 consecutive weeks.Echocardiography was used to measure cardiac function in mice.Masson staining was used to evaluate the degree of myocardial fibrosis in mice.Qualitative and quantitative analysis of endothelial mesenchymal transition(EndMT)after MIRI was performed by immunohistochemistry,immunofluorescence staining and flow cytometry,respectively.The protein expressions of platelet endothelial cell adhesion molecule-1(CD31),α-smoth muscle actin(α-SMA),phosphatidylinositol-3-kinase(PI3K)and phospho protein kinase B(p-AKT)were assessed using Western blot.Results TXL improved cardiac function in MIRI mice,reduced the degree of myocardial fibrosis,increased the expression of CD31 and inhibited the expression ofα-SMA,thus inhibited the occurrence of EndMT(P<0.05 or P<0.01).TXL significantly increased the protein expressions of PI3K and p-AKT(P<0.05 or P<0.01).There was no significant difference between TXL and BNPL group(P>0.05).In addition,the use of the PI3K/AKT pathway-specific inhibitor LY-294002 to block this pathway and combination with TXL intervention,eliminated the protective effect of TXL,further supporting the protective effect of TXL.Conclusion TXL activated the PI3K/AKT signaling pathway to inhibit EndMT and attenuated myocardial fibrosis after MIRI in mice.展开更多
Osteoporosis is a metabolic dysregulation of bone that occurs mainly in postmenopausal women,and the hyperfunction of osteoclasts is the primary contributor to postmenopausal osteoporosis.However,the development of ef...Osteoporosis is a metabolic dysregulation of bone that occurs mainly in postmenopausal women,and the hyperfunction of osteoclasts is the primary contributor to postmenopausal osteoporosis.However,the development of effective therapeutic drugs and precise delivery systems remains a challenge in the field of anti-absorption therapy.Here,we reported theα-cyperone(α-CYP)for anti-osteoporosis and developed a liposome-based nano-drug delivery system ofα-CYP,that specifically targets the bone resorption interface.Firstly,we found that theα-CYP,one of the major sesquiterpenes of Cyperus rotundus L.,attenuated the progression of osteoporosis in ovariectomized(OVX)mice and down-regulated the expression of phosphorylated proteins of phosphoinositide 3-kinase(PI3K)and protein kinase B(Akt),causing down-regulation of osteoclast-related genes/proteins and curbing osteoclast differentiation.Furthermore,α-CYP reversed the activation of osteoclastic differentiation and enhanced osteoporosis-related proteins expression caused by PI3K/Akt agonist(YS-49).More importantly,we adopted the osteoclastic resorption surface targeting peptide Asp8 and constructed the liposome(lipαC@Asp8)to deliverα-CYP to osteoclasts and confirmed its anti-osteoporosis effect and enhanced osteoclast inhibition by blocking PI3K/Akt axis.In conclusion,this study demonstrated thatα-CYP inhibits osteoclast differentiation and osteoporosis development by silencing PI3K/Akt pathway,and the liposome targeting delivery systems loaded withα-CYP might provide a novel and effective strategy to treat osteoporosis.展开更多
The phosphatidylinositol 3-kinase(PI3K) pathway is frequently activated in human cancers.Class I PI3 Ks are lipid kinases that phosphorylate phosphatidylinositol 4,5-bisphosphate(PIP2) at the 3-OH of the inositol ring...The phosphatidylinositol 3-kinase(PI3K) pathway is frequently activated in human cancers.Class I PI3 Ks are lipid kinases that phosphorylate phosphatidylinositol 4,5-bisphosphate(PIP2) at the 3-OH of the inositol ring to generate phosphatidylinositol 3,4,5-trisphosphate(PIP3), which in turn activates Akt and the downstream effectors like mammalian target of rapamycin(m TOR) to play key roles in carcinogenesis. Therefore, PI3 K has become an important anticancer drug target, and currently there is very high interest in the pharmaceutical development of PI3 K inhibitors. Idelalisib has been approved in USA and Europe as the first-in-class PI3 K inhibitor for cancer therapy. Dozens of other PI3 K inhibitors including BKM120 and ZSTK474 are being evaluated in clinical trials. Multifaceted studies on these PI3 K inhibitors are being performed, such as single and combinational efficacy, resistance, biomarkers,etc. This review provides an introduction to PI3 K and summarizes key advances in the development of PI3 K inhibitors.展开更多
Phosphatidylinositol 3-kinase(PI3K)is a crucial cell survival pathway implicated in tumorigenesis because of its role in stimulating cell proliferation and suppressing apoptosis.This study was to investigate the regul...Phosphatidylinositol 3-kinase(PI3K)is a crucial cell survival pathway implicated in tumorigenesis because of its role in stimulating cell proliferation and suppressing apoptosis.This study was to investigate the regulation of proliferation and apoptosis by LY294002,an inhibitor of PI3K in cervical cancer cells and the expression of FLICE-like inhibitory protein(c-FLIP)in vitro.Human cervical cancer HeLa cells were used in this experiment and cultured.The cultured cells were treated with LY294002 at different concentrations(10,25,50 and 100µmol/L)for 6,12,24,and 48 h before harvesting for evaluation.Cell viability was measured by 3-(4,5)-dimethylthiazol(-2-y1)-3,5-di-phenyltetrazoliumbromide(MTT)assay.Apoptosis was analyzed byflow cytometry.The expression of c-FLIP was detected by Western blot.Cell viability was inhibited by LY294002 significantly(P<0.05).Flow cytometry analysis revealed that cell apoptosis was significantly increased in the presence of LY294002 as compared with the control group.Although the expression of c-FLIP was increased in a short time,the expression of c-FLIP was markedly suppressed after the treatment of LY294002 for 48 h.These results suggested that the PI3K/Akt signal pathway might be involved in the regulation of cell apoptosis in cervical cancer cells.Moreover,the regulation of c-FLIP expression through PI3K/Akt signal pathway in cervical cancer cells was observed in vitro.展开更多
Objective:To systematically explore the effect and mechanism of melastomatis dodecandri herba(Melastoma dodecandrum Lour.)in the treatment of hepatitis based on network pharmacology.Method:We evaluated the hepatoprote...Objective:To systematically explore the effect and mechanism of melastomatis dodecandri herba(Melastoma dodecandrum Lour.)in the treatment of hepatitis based on network pharmacology.Method:We evaluated the hepatoprotective effects of M.dodecandrum in concanavalin A(Con A)-induced hepatitis in mice by assessing survival rate,histological analysis,serum transaminases,and related cytokines.Then the mechanism of action was predicted by a network pharmacology-based strategy.Based on the results,we measured the hepatic expression of related genes at mRNA level and proteins related to the phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt)and nuclear factorkappa B(NF-кB)pathways.Results:Our study results clearly demonstrated that M.dodecandrum pretreatment significantly alleviated liver injury.This was demonstrated by an increase in survival rate,decreased severity of liver damage,and reduced serum transaminase levels compared with those in the Con A group.Moreover,M.dodecandrum significantly reduced the serum levels of tumor necrosis factor-a,interleukin-6,and interferon-g and increased the liver levels of superoxide dismutase,which indicated that M.dodecandrum exhibits anti-inflammatory and antioxidant activities.On the basis of network pharmacology,50 nodes were selected as major hubs based on their topological importance.Pathway enrichment analyses indicated that the putative targets of M.dodecandrum mostly participate in various pathways associated with the anti-inflammation response,which implies the underlying mechanism by which M.dodecandrum acts on hepatitis.Real-time fluorescent quantitative PCR analysis showed that M.dodecandrum downregulates the mRNA expression of interleukin-6,Toll-like receptor 7,interleukin-1 receptor-associated kinase-4,NF-кB and tumor necrosis factor-a in liver tissues.Western blotting showed that M.dodecandrum pretreatment protected against inflammation through activating the PI3K-Akt pathway by upregulating phosphorylated Akt(p-Akt)expression and suppressing NF-кB activation by inhibiting the phosphorylation of IKK,IkBa,and p65.Conclusion:The present work demonstrated the hepatoprotective effects of M.dodecandrum by regulating the PI3K/Akt and NF-кB pathways in Con A-induced mice,which provide insights into the treatment of hepatitis using M.dodecandrum.展开更多
基金National Natural Science Foundation of China(No.81860709)Baise City Science and Technology Plan Project(No.Encyclopedia 20224139,Encyclopedia 20211807)2023 Youjiang Ethnic Medical College Graduate Innovation Program Project(No.YXCXJH2023013)。
文摘Objective:To investigate the effects of stilbene glycoside(TSG)on okadaic acid-induced apoptosis in human neuroblastoma cells(SH-SY5Y)via the PI3K/AKT pathway.Methods:The optimal concentration of OA was screened by CCK-8 assay,and SH-SY5Y cells were divided into control group,model group,TSG group,LY294002 group and LY294002+TSG group.The proliferation and apoptosis in each group were detected by CCK-8 and TUNEL assays;Western blotting method and real-time fluorescence quantitative polymerase chain reaction was used to detect the expression of PI3K,P-PI3K(Y607),AKT,P-AKT(Ser473),Bcl-2 and Bax proteins.The relative protein expression was represented by P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax gray ratio.Results:CCK-8 screened the optimal concentration of OA as 40 nmol/L.Compared with the control group,the model group increased relative cell viability,decreased apoptosis rate,the pathway and apoptotic proteins expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax were decreased,and the mRNA expression levels of PI3K,AKT and Bcl-2 were decreased.Bax mRNA expression level increased(P<0.05);Compared with model group,TSG group increased relative cell viability,decreased apoptosis rate,increased protein expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT,Bcl-2/Bax,and increased mRNA expression levels of PI3K,AKT,and Bcl-2.Bax mRNA expression decreased(P<0.05),LY294002 group decreased relative cell viability,increased apoptosis rate,P-PI3K(Y607)/PI3K protein expression levels were significantly decreased(P<0.05),P-AKT(Ser473)/AKT and Bcl-2/Bax protein expression levels were significantly decreased,but there was no statistical significance,PI3K,AKT and Bcl-2 mRNA expression levels were decreased,and Bax mRNA expression levels were increased(all P<0.05);Compared with LY294002 group,LY294002+TSG group increased relative cell viability,decreased apoptosis rate,and the protein expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax were increased.The mRNA expression levels of PI3K,AKT,Bcl-2 were increased,Bax was decreased(all P<0.05).Conclusion:Stilbene glycoside may alleviate okadaic acid-induced apoptosis in SH-SY5Y cells by interfering with the PI3K/AKT signaling pathway,which in turn regulates the expression of apoptotic factors such as Bcl-2 and Bax.
基金This work was supported by grants from the National Natural Science Foundation of China(No.30370142)the.National Special Key Project on Functional Genomics and Biochip of China(No.2002AA2Z1002)the Project sponsored by the Scientific Research Foundation for the Returned Oversea Chinese Scholars,State Education Ministry.
文摘Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K) plays an important role in signal transduction in animal cellsby phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4). Both IP3 and IP4 arecritical second messengers which regulate calcium (Ca2+) homeostasis. Mammalian IP3Ks are involved in many biologicalprocesses, including brain development, memory, learning and so on. It is widely reported that Ca2+ is a canonicalsecond messenger in higher plants. Therefore, plant IP3K should also play a crucial role in plant development. Recently,we reported the identification of plant IP3K gene (AtIpk2β/AtIP3K) from Arabidopsis thaliana and its characterization.Here, we summarize the molecular cloning, biochemical properties and biological functions of IP3Ks from animal, yeastand plant. This review also discusses potential functions of IP3Ks in signaling crosstalk, inositol phosphate metabolism,gene transcriptional control and so on.
基金the Medical Research Council(MR/R004544/1,MR/R004463/1,to RE)EU ERA-NET NEURON(AxonRepair grant,to BN)+1 种基金Fight for Sight(5119/5120,and 5065-5066,to RE)National Eye Research Centre(to RE).
文摘Much research has focused on the PI3-kinase and PTEN signaling pathway with the aim to stimulate repair of the injured central nervous system.Axons in the central nervous system fail to regenerate,meaning that injuries or diseases that cause loss of axonal connectivity have life-changing consequences.In 2008,genetic deletion of PTEN was identified as a means of stimulating robust regeneration in the optic nerve.PTEN is a phosphatase that opposes the actions of PI3-kinase,a family of enzymes that function to generate the membrane phospholipid PIP_(3) from PIP_(2)(phosphatidylinositol(3,4,5)-trisphosphate from phosphatidylinositol(4,5)-bisphosphate).Deletion of PTEN therefore allows elevated signaling downstream of PI3-kinase,and was initially demonstrated to promote axon regeneration by signaling through mTOR.More recently,additional mechanisms have been identified that contribute to the neuron-intrinsic control of regenerative ability.This review describes neuronal signaling pathways downstream of PI3-kinase and PIP3,and considers them in relation to both developmental and regenerative axon growth.We briefly discuss the key neuron-intrinsic mechanisms that govern regenerative ability,and describe how these are affected by signaling through PI3-kinase.We highlight the recent finding of a developmental decline in the generation of PIP_(3) as a key reason for regenerative failure,and summarize the studies that target an increase in signaling downstream of PI3-kinase to facilitate regeneration in the adult central nervous system.Finally,we discuss obstacles that remain to be overcome in order to generate a robust strategy for repairing the injured central nervous system through manipulation of PI3-kinase signaling.
基金supported by intramural research funding of National Center for Complementary and Alternative Medicine(now is National Center for Complementary and Integrative Health),NIH,the US Department of Health and Human Services(to X.L.)and an operating grant(MOP 123279)from Canadian Institutes for Health Research(to Z.Y.)
文摘Our recent studies with cultured retinal pigment epithelium cells suggested that overexpression of interleukin 17 receptor C(IL-17RC),a phenomenon observed in peripheral blood and chorioretinal tissues with age-related macular degeneration(AMD),was associated with altered activation of phosphatidylinositide 3-kinase(PI3K),Akt,and glycogen synthase kinase 3(GSK3).We wondered whether or not altered PI3 K,Akt,and GSK3 activities could be detected in peripheral blood mononuclear cells(PBMC) obtained from AMD patients.In the patients' PBMC,absent or reduced serine-phosphorylation of GSK3α or GSK3β was observed,which was accompanied with increased phosphorylation of GSK3 substrates(e.g.CCAAT enhancer binding protein a,insulin receptor substrate 1,and TAU),indicative of enhanced GSK3 activation.In addition,decreased protein mass of PI3K85α and tyrosinephosphorylation of PI3K50α was present in PBMC of the AMD patients,suggesting impaired PI3 K activation.Moreover,abnormally lowered molecular weight forms of Akt and GSK3 were detected in PBMC of the AMD patients.These data demonstrate that despite the presence of high levels of IL-17 RC,Wnt-3a and vascular endothelial growth factor,the PI3K/Akt/GSK3 signaling pathway is insensitive to these stimuli in PBMC of the AMD patients.Thus,measurement of PI3K/Akt/GSK3 expression and activity in PBMC may serve as a surrogate biomarker for AMD.
基金supported by the National Natural Science Foundation of China (Grant No. 30672208, 81270603, and 31301161)Tianjin Natural Science Foundation of China (Grant No. 13JCYBJC22800)
文摘Objective: To investigate the effects of CAL-101, particularly when combined with bortezomib(BTZ) on mantle cell lymphoma(MCL) cells, and to explore its relative mechanisms.Methods: MTT assay was applied to detect the inhibitory effects of different concentrations of CAL-101. MCL cells were divided into four groups: control group, CAL-101 group, BTZ group, and CAL-101/BTZ group. The expression of PI3K-p110σ, AKT, ERK, p-AKT and p-ERK were detected by Western blot. The apoptosis rates of CAL-101 group, BTZ group, and combination group were detected by flow cytometry. The location changes of nuclear factor kappa-B(NF-κB) of 4 groups was investigated by NF-κB Kit exploring. Western blot was applied to detect the levels of caspase-3 and the phosphorylation of AKT in different groups. Results: CAL-101 dose- and time-dependently induced reduction in MCL cell viability. CAL-101 combined with BTZ enhanced the reduction in cell viability and apoptosis. Western blot analysis showed that CAL-101 significantly blocked the PI3K/AKT and ERK signaling pathway in MCL cells. The combination therapy contributed to the inactivation of NF-κB and AKT in MCL cell lines. However, cleaved caspase-3 was up-regulated after combined treatment. Conclusion: Our study showed that PI3K/p110σ is a novel therapeutic target in MCL, and the underlying mechanism could be the blocking of the PI3K/AKT and ERK signaling pathways. These findings provided a basis for clinical evaluation of CAL-101 and a rationale for its application in combination therapy, particularly with BTZ.
基金Supported by National Natural Science Foundation of China(81760806)Project of Traditional Chinese Medicine Administration of Gansu Province(GZK-2019-28)Innovation Ability Improvement Project of Higher Education Institutions of Gansu Province(2019B-103)。
文摘[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signaling pathway.[Methods]Sixty sexually mature female SD rats were irradiated with ^(60)Co-γ-ray(6.0 Gy,LD 40)for 24 h at one time.These rats were randomly divided into model group,Progynova group[0.18(g·kg)/d],Progynova[0.09(g·kg)/d]+Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill medium dose[9.45(g·kg)/d)]group and Zuogui Pill low dose[4.725(g·kg)/d]group.The administration(once a day)lasted 21 d.The rat serum[follicle-stimulating hormone(FSH),luteinizing hormone(LH)and estradiol(E_(2))]were detected by Enzyme-linked immunosorbent assay(ELISA).The morphological changes of ovary were observed by hematoxylin-eosin(HE)staining.The apoptosis rate of granulosa cells was detected by terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling(TUNEL).The protein expression of phosphorylated(p)-PI3K,p-Akt,p-mTOR,B-cell lymphoma-2(Bcl-2),and Bcl-2-associated X protein(Bax)in ovarian tissues were detected by Western blot.[Results]Compared with the normal group,the model group showed significant increase in the serum FSH(P<0.01),significant decrease in serum E_(2)(P<0.05),and decrease in the number of early follicles and luteum in the ovary(P<0.01).Besides,the apoptosis rate of granulosa cells increased significantly(P<0.01);the expression of p-PI3K,p-Akt,p-mTOR and Bcl-2 in ovarian tissue decreased significantly,while the expression of Bax increased significantly(P<0.01).Compared with the model group,the number of early follicles in the ovary increased and the apoptosis rate of granulosa cells decreased after intervention in each administration group.In addition,the protein expressions of p-PI3K,p-Akt,p-mTOR and Bcl-2 increased,while the expression of Bax decreased,especially in Progynova+Zuogui Pill high dose group,the differences were statistically significant(P<0.05,P<0.01).[Conclusions]Zuogui Pill may protect the radiation-injured ovary through activating the expression of PI3K/Akt/mTOR protein in ovarian tissue,increasing the amount of Bcl-2 protein and inhibiting the expression of Bax protein.
基金Supported by the National Natural Science Foundation of China(No.81973692)Traditional Chinese Medicine Innovation Project of Hebei Province(No.223777120D)High-Level Talent Funding Program of Hebei(No.E2020100001)。
文摘Objective To investigate the potential role of Tongxinluo(TXL)in attenuating myocardial fibrosis after myocardial ischemia-reperfusion injury(MIRI)in mice.Methods A MIRI mouse model was established by left anterior descending coronary artery ligation for 45 min.According to a random number table,66 mice were randomly divided into 6 groups(n=11 per group):the sham group,the model group,the LY-294002 group,the TXL group,the TXL+LY-294002 group and the benazepril(BNPL)group.The day after modeling,TXL and BNPL were administered by gavage.Intraperitoneal injection of LY-294002 was performed twice a week for 4 consecutive weeks.Echocardiography was used to measure cardiac function in mice.Masson staining was used to evaluate the degree of myocardial fibrosis in mice.Qualitative and quantitative analysis of endothelial mesenchymal transition(EndMT)after MIRI was performed by immunohistochemistry,immunofluorescence staining and flow cytometry,respectively.The protein expressions of platelet endothelial cell adhesion molecule-1(CD31),α-smoth muscle actin(α-SMA),phosphatidylinositol-3-kinase(PI3K)and phospho protein kinase B(p-AKT)were assessed using Western blot.Results TXL improved cardiac function in MIRI mice,reduced the degree of myocardial fibrosis,increased the expression of CD31 and inhibited the expression ofα-SMA,thus inhibited the occurrence of EndMT(P<0.05 or P<0.01).TXL significantly increased the protein expressions of PI3K and p-AKT(P<0.05 or P<0.01).There was no significant difference between TXL and BNPL group(P>0.05).In addition,the use of the PI3K/AKT pathway-specific inhibitor LY-294002 to block this pathway and combination with TXL intervention,eliminated the protective effect of TXL,further supporting the protective effect of TXL.Conclusion TXL activated the PI3K/AKT signaling pathway to inhibit EndMT and attenuated myocardial fibrosis after MIRI in mice.
基金supported by the National Key Research and Development Project(No.2021YFA1201404)Major Project of the National Natural Science Foundation of China(Nos.81991514,82272530)+2 种基金Jiangsu Province Medical Innovation Center of Orthopedic Surgery(No.CXZX202214)Jiangsu Provincial Key Medical Center Foundation,Jiangsu Provincial Medical Outstanding Talent Foundation,Jiangsu Provincial Medical Youth Talent Foundation,Jiangsu Provincial Key Medical Talent Foundationthe Fundamental Research Funds for the Central Universities(Nos.14380493 and 14380494).
文摘Osteoporosis is a metabolic dysregulation of bone that occurs mainly in postmenopausal women,and the hyperfunction of osteoclasts is the primary contributor to postmenopausal osteoporosis.However,the development of effective therapeutic drugs and precise delivery systems remains a challenge in the field of anti-absorption therapy.Here,we reported theα-cyperone(α-CYP)for anti-osteoporosis and developed a liposome-based nano-drug delivery system ofα-CYP,that specifically targets the bone resorption interface.Firstly,we found that theα-CYP,one of the major sesquiterpenes of Cyperus rotundus L.,attenuated the progression of osteoporosis in ovariectomized(OVX)mice and down-regulated the expression of phosphorylated proteins of phosphoinositide 3-kinase(PI3K)and protein kinase B(Akt),causing down-regulation of osteoclast-related genes/proteins and curbing osteoclast differentiation.Furthermore,α-CYP reversed the activation of osteoclastic differentiation and enhanced osteoporosis-related proteins expression caused by PI3K/Akt agonist(YS-49).More importantly,we adopted the osteoclastic resorption surface targeting peptide Asp8 and constructed the liposome(lipαC@Asp8)to deliverα-CYP to osteoclasts and confirmed its anti-osteoporosis effect and enhanced osteoclast inhibition by blocking PI3K/Akt axis.In conclusion,this study demonstrated thatα-CYP inhibits osteoclast differentiation and osteoporosis development by silencing PI3K/Akt pathway,and the liposome targeting delivery systems loaded withα-CYP might provide a novel and effective strategy to treat osteoporosis.
文摘The phosphatidylinositol 3-kinase(PI3K) pathway is frequently activated in human cancers.Class I PI3 Ks are lipid kinases that phosphorylate phosphatidylinositol 4,5-bisphosphate(PIP2) at the 3-OH of the inositol ring to generate phosphatidylinositol 3,4,5-trisphosphate(PIP3), which in turn activates Akt and the downstream effectors like mammalian target of rapamycin(m TOR) to play key roles in carcinogenesis. Therefore, PI3 K has become an important anticancer drug target, and currently there is very high interest in the pharmaceutical development of PI3 K inhibitors. Idelalisib has been approved in USA and Europe as the first-in-class PI3 K inhibitor for cancer therapy. Dozens of other PI3 K inhibitors including BKM120 and ZSTK474 are being evaluated in clinical trials. Multifaceted studies on these PI3 K inhibitors are being performed, such as single and combinational efficacy, resistance, biomarkers,etc. This review provides an introduction to PI3 K and summarizes key advances in the development of PI3 K inhibitors.
文摘Phosphatidylinositol 3-kinase(PI3K)is a crucial cell survival pathway implicated in tumorigenesis because of its role in stimulating cell proliferation and suppressing apoptosis.This study was to investigate the regulation of proliferation and apoptosis by LY294002,an inhibitor of PI3K in cervical cancer cells and the expression of FLICE-like inhibitory protein(c-FLIP)in vitro.Human cervical cancer HeLa cells were used in this experiment and cultured.The cultured cells were treated with LY294002 at different concentrations(10,25,50 and 100µmol/L)for 6,12,24,and 48 h before harvesting for evaluation.Cell viability was measured by 3-(4,5)-dimethylthiazol(-2-y1)-3,5-di-phenyltetrazoliumbromide(MTT)assay.Apoptosis was analyzed byflow cytometry.The expression of c-FLIP was detected by Western blot.Cell viability was inhibited by LY294002 significantly(P<0.05).Flow cytometry analysis revealed that cell apoptosis was significantly increased in the presence of LY294002 as compared with the control group.Although the expression of c-FLIP was increased in a short time,the expression of c-FLIP was markedly suppressed after the treatment of LY294002 for 48 h.These results suggested that the PI3K/Akt signal pathway might be involved in the regulation of cell apoptosis in cervical cancer cells.Moreover,the regulation of c-FLIP expression through PI3K/Akt signal pathway in cervical cancer cells was observed in vitro.
基金This work was supported by the National Key R&D Program of China(2018YFC1706800).
文摘Objective:To systematically explore the effect and mechanism of melastomatis dodecandri herba(Melastoma dodecandrum Lour.)in the treatment of hepatitis based on network pharmacology.Method:We evaluated the hepatoprotective effects of M.dodecandrum in concanavalin A(Con A)-induced hepatitis in mice by assessing survival rate,histological analysis,serum transaminases,and related cytokines.Then the mechanism of action was predicted by a network pharmacology-based strategy.Based on the results,we measured the hepatic expression of related genes at mRNA level and proteins related to the phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt)and nuclear factorkappa B(NF-кB)pathways.Results:Our study results clearly demonstrated that M.dodecandrum pretreatment significantly alleviated liver injury.This was demonstrated by an increase in survival rate,decreased severity of liver damage,and reduced serum transaminase levels compared with those in the Con A group.Moreover,M.dodecandrum significantly reduced the serum levels of tumor necrosis factor-a,interleukin-6,and interferon-g and increased the liver levels of superoxide dismutase,which indicated that M.dodecandrum exhibits anti-inflammatory and antioxidant activities.On the basis of network pharmacology,50 nodes were selected as major hubs based on their topological importance.Pathway enrichment analyses indicated that the putative targets of M.dodecandrum mostly participate in various pathways associated with the anti-inflammation response,which implies the underlying mechanism by which M.dodecandrum acts on hepatitis.Real-time fluorescent quantitative PCR analysis showed that M.dodecandrum downregulates the mRNA expression of interleukin-6,Toll-like receptor 7,interleukin-1 receptor-associated kinase-4,NF-кB and tumor necrosis factor-a in liver tissues.Western blotting showed that M.dodecandrum pretreatment protected against inflammation through activating the PI3K-Akt pathway by upregulating phosphorylated Akt(p-Akt)expression and suppressing NF-кB activation by inhibiting the phosphorylation of IKK,IkBa,and p65.Conclusion:The present work demonstrated the hepatoprotective effects of M.dodecandrum by regulating the PI3K/Akt and NF-кB pathways in Con A-induced mice,which provide insights into the treatment of hepatitis using M.dodecandrum.