As the blue and yellow lights are complementary colors, a blue InGaN LED chip is coated hy a yellow phosphor film to generate white light based on luminescence conversion mechanism. The emitted light of a blue LED is ...As the blue and yellow lights are complementary colors, a blue InGaN LED chip is coated hy a yellow phosphor film to generate white light based on luminescence conversion mechanism. The emitted light of a blue LED is used as the primary source for exciting fluorescent material such as cerium doped yttrium aluminum garnet with the formula Y3Al2O12 : Ce^3+ (in short: YAG : Ce^3+ ). The matching of the spectrum of the blue LED chips and the YAG : Ce^3+ yellow phosphor is studied to improve the conversion efficiency. The packaging methods and manufacturing processes for high power single chip-white LEDs are introduced. The uniformity of the output white light is investigated. Based on the characteristics of the high power white LEDs, some approaches and processes are suggested to improve the light uniformity when they are fabricated. The effectiveness of those approaches on the improvement of LEDs is discussed in detail and some interesting conclusions are also presented.展开更多
In order to determine the environmental effects on the luminescence properties of a phosphor layer for high-power light emitting diodes, a high humidity and temperature test (85℃/85%RH) and a thermal aging test (8...In order to determine the environmental effects on the luminescence properties of a phosphor layer for high-power light emitting diodes, a high humidity and temperature test (85℃/85%RH) and a thermal aging test (85℃) were performed on silicone/YAG phosphor composites. The luminescence properties of silicone/phosphor composites are monitored by a fluorescence spectrometer. The results show that high temperature could result in an increase in conversion efficiency of composites during the early aging stage and red shift of YAG phosphor; and high humidity could result in a significant decrease in conversion efficiency of composites while having a small influence upon the optimal excitation wavelength of the YAG phosphor.展开更多
基金"863"Project from Ministry of Science & Technology of China(2006AA03A116)
文摘As the blue and yellow lights are complementary colors, a blue InGaN LED chip is coated hy a yellow phosphor film to generate white light based on luminescence conversion mechanism. The emitted light of a blue LED is used as the primary source for exciting fluorescent material such as cerium doped yttrium aluminum garnet with the formula Y3Al2O12 : Ce^3+ (in short: YAG : Ce^3+ ). The matching of the spectrum of the blue LED chips and the YAG : Ce^3+ yellow phosphor is studied to improve the conversion efficiency. The packaging methods and manufacturing processes for high power single chip-white LEDs are introduced. The uniformity of the output white light is investigated. Based on the characteristics of the high power white LEDs, some approaches and processes are suggested to improve the light uniformity when they are fabricated. The effectiveness of those approaches on the improvement of LEDs is discussed in detail and some interesting conclusions are also presented.
基金Project supported by the Key Project of the National Natural Science Foundation of China(No.50835005)the National High Technology Research and Development Program of China(No.2009AA03A1A3)
文摘In order to determine the environmental effects on the luminescence properties of a phosphor layer for high-power light emitting diodes, a high humidity and temperature test (85℃/85%RH) and a thermal aging test (85℃) were performed on silicone/YAG phosphor composites. The luminescence properties of silicone/phosphor composites are monitored by a fluorescence spectrometer. The results show that high temperature could result in an increase in conversion efficiency of composites during the early aging stage and red shift of YAG phosphor; and high humidity could result in a significant decrease in conversion efficiency of composites while having a small influence upon the optimal excitation wavelength of the YAG phosphor.