Experiments on Phosphorus (P) fraction characteristics in sediment resuspension were performed under adequate hydrodynamic conditions. It is found that the concentration of Suspended Particulate Matter (SPM) in th...Experiments on Phosphorus (P) fraction characteristics in sediment resuspension were performed under adequate hydrodynamic conditions. It is found that the concentration of Suspended Particulate Matter (SPM) in the eddy current region exhibits the "Matthew effect". Velocity is an impact factor of the Equilibrium Phosphate Concentration (EPC), which is related to other hydraulic conditions. Overall bioavailable dissolved P in the SPM causes migration to overlying water and sediment, eventually being converted into a chemical speciation of P. Conditions of resuspension promote A1-P of SPM that migrated to the sediment and water. Concentrations of A1-P in SPM are reduced. P is released from SPM to water bodies, mainly through conversion into particulate P and dissolved total P. Meanwhile, exchange between SPM and sediments occur mainly through Ca-P migration. A1-P and BD-P possess similar geochemical characteristics or source. Ca-P and A1-P exhibit a negative correlation between migration and conversion.展开更多
基金supported by the National Basic Research Program of China (973 Program,Grant No.2008CB418203)the National Science and Technology Specific Project of China (Grant No.20080ZX07422-005)
文摘Experiments on Phosphorus (P) fraction characteristics in sediment resuspension were performed under adequate hydrodynamic conditions. It is found that the concentration of Suspended Particulate Matter (SPM) in the eddy current region exhibits the "Matthew effect". Velocity is an impact factor of the Equilibrium Phosphate Concentration (EPC), which is related to other hydraulic conditions. Overall bioavailable dissolved P in the SPM causes migration to overlying water and sediment, eventually being converted into a chemical speciation of P. Conditions of resuspension promote A1-P of SPM that migrated to the sediment and water. Concentrations of A1-P in SPM are reduced. P is released from SPM to water bodies, mainly through conversion into particulate P and dissolved total P. Meanwhile, exchange between SPM and sediments occur mainly through Ca-P migration. A1-P and BD-P possess similar geochemical characteristics or source. Ca-P and A1-P exhibit a negative correlation between migration and conversion.