Under greenhouse conditions, a pot experiment was conducted to seek critical phosphorus concentrations of wheat genotypes with high and low phosphorus use efficiency. Results indicated that low efficient genotype was...Under greenhouse conditions, a pot experiment was conducted to seek critical phosphorus concentrations of wheat genotypes with high and low phosphorus use efficiency. Results indicated that low efficient genotype was much more sensitive to phosphorus deficiency, with low or without phosphorus application, seed yield and dry matter of biomass were much lower. The yield of all the genotypes gradually got higher as application rate increased, but high efficient genotype——Lofflin produced relatively higher yields of seeds and biomass with low or without phosphorus input. Highly tolerate to low availability of soil phosphorus and efficient activation and absorption for soil unavailable phosphorus had been displayed. As application rates increased, yields of both genotypes were increased but high efficient genotype maintained stable while low efficient one showed continuously increase with remuneration decrease progressively. Critical phosphorus concentrations in high efficient genotypes of winter wheat were lower than that in low efficient ones and changed with various development stages, for example, at seedling state, the concentrations of high efficient genotype were 4.50—4.60 g/kg while low efficient one was 5.0 g/kg. They were 2.25—2.30 g/kg and 2.52 g/kg at flower stage, 1.96—2.05 g/kg and 2.15 g/kg at maturity respectively. But the values in seeds were reversal, higher in high efficient genotype(4.05—4.10 g/kg) than that in low efficient(3.90 g/kg). Therefore, phosphorus high efficient genotypes belong to the phosphorus resource saving type.展开更多
The growth and interspecies competition of two red tide algal species Thalassiosira pseudonana Hasle et Heimdal and Gymnodinium sp. were studied under different concentration ratios of nitrogen to phosphorus, and the ...The growth and interspecies competition of two red tide algal species Thalassiosira pseudonana Hasle et Heimdal and Gymnodinium sp. were studied under different concentration ratios of nitrogen to phosphorus, and the algal hatch culture experiments were conducted. The physiological and biochemical indexes were measured periodically, including the maximum comparing growth rate, relative growth rate, average double time and chlorophyll a concentration. The results showed that when the concentration ratio of nitrogen to phosphorus was 16: 1, the maximum comparing growth rate, relative growth rate and chlorophyll a concentration of Thalassiosira pseudonana all reached the highest,and average double time was the shortest. This implied that the optimal concentration ratio of nitrogen to phosphorus of Thalassiosira pseudonana is 16: 1. When the concentration ratio of nitrogen to phosphorus was 6:1, the maximum comparing growth rate, relative growth rate and the chlorophyll a concentration of Gymnodinium sp. reached the highest, and average double time was the shortest, so the optimal concentration ratio of nitrogen to phosphorus of Gymnodinium sp. is 6: 1. From the growth curves as indicated both in the cell density and the chlorophyll a concentration, it is suggested that the influence of concentration ratio of nitrogen to phosphorus on the chlorophyll a concentration and the cell density are almost the same. Different concentration ratios of nitrogen to phosphorus had weak influence on community succession and the competition between the two algae. Gymnodinium sp. may use the phosphorus in vivo for growth, so it is important to pay attention to the concealment of phosphorus, in order to avoid the outbreak of red tide. On the basis of the importance of nitrogen and phosphorus and the ratio of their concentration, the possible outbreak mechanism of red tide of the two algae was also discussed.展开更多
Elimination of phosphorus vaporizing from silicon was investigated. Si-P alloy made from electronic grade silicon was used. All the samples were analyzed by GD-MS. Theory calculation determines that phosphorus evapora...Elimination of phosphorus vaporizing from silicon was investigated. Si-P alloy made from electronic grade silicon was used. All the samples were analyzed by GD-MS. Theory calculation determines that phosphorus evaporates from molten silicon as gas species P and P2 at a finite reduced pressure. The experimental results show that phosphorus mass fraction can be decreased from 0.046% (460ppmw) to around 0.001% (10ppmw) under the condition of temperature 1 873 K, chamber pressure 0.6-0.8 Pa, holding time 1 h. Both experimental data and calculation results agree that at high phosphorus concentration, phosphorus removal is quite dependent on high chamber pressure while it becomes independent on low chamber pressure. The reason is that phosphorus evaporates from molten silicon as gas species P2 at a relatively high phosphorus concentration, while gas species P will be dominated in its vapour at low phosphorus content.展开更多
Microalgal lipids are regarded as main future feedstock of biofuels for its higher efficiency of accumulation and sus- tainable production. In order to investigate the effect of various nitrogen to phosphorus ratios o...Microalgal lipids are regarded as main future feedstock of biofuels for its higher efficiency of accumulation and sus- tainable production. In order to investigate the effect of various nitrogen to phosphorus ratios on cells growth, chlorophyll content and accumulation of lipids in Dunaliella tertiolecta, experiments were carried out in modified microalgal medium with inorganic nitrogen (nitrate-nitrogen) or organic nitrogen (urea-nitrogen) as the sole nitrogen source at initial N:P ratios ranging from 1:1 to 32:1. The favorable N:P of 16:1 in the nitrate-N or urea-N medium yielded the maximum cell density and specific growth rate. Decrease in chlorophyll content were observed at the N:P of 4:1 in both nitrate-N and urea-N cultures. It was also observed that the maximum lipids concentration was obtained at the N:P of 4:1 in both nitrate and urea nutrient medium. The lipid productivity and lipid content of cultures in the urea-N medium at the N:P of 4: lwere markedly higher than those from cultures with other N:P ratios (p〈 0.05). The results of this work illustrate the possibility that higher ratios of nitrogen to phosphorus have enhancing effect on cells growth of D. tertiolecta. Conversely, higher lipid accumulation is associated with a decrease in chlorophyll content under lower ratios of nitro- gen to phosphorus. The results confirm the hypothesis of this study that a larger metabolic flux has been channeled to lipid accumu- lation in D. tertiolecta cells when the ratios of nitrogen to phosphorus drop below a critical level.展开更多
In this paper, the bottom of the Dianshan Lake was selected as a test sample. The dynamic release of contaminated sediments into the overlying water column was experimentally investigated in an open water channel unde...In this paper, the bottom of the Dianshan Lake was selected as a test sample. The dynamic release of contaminated sediments into the overlying water column was experimentally investigated in an open water channel under different hydrodynamic conditions. The experimental results indicate that the Total Phosphorus (TP) release process can be divided into three stages: rapid release, slow release and equilibration release. In the initial release stage the measured TP concentration changes along the depth. The TP concentration near the sediment-water interface is higher than that near the water surface, but the TP concentration becomes uniform along the depth after 3 h. The dynamic release of re-suspension sediment pollutants is about 6 times higher than the static release of sediment-water interface. There are three main types of release mechanism: diffusion release, re-suspended pore water mixing release and re-suspended particles desorbing release.展开更多
Background It has been long thought that nitrogen(N),phosphorus(P)concentrations and their ratios(N:P)in metabolically active or functional organs(i.e.,leaves)are less responsive to environmental changes.Little attent...Background It has been long thought that nitrogen(N),phosphorus(P)concentrations and their ratios(N:P)in metabolically active or functional organs(i.e.,leaves)are less responsive to environmental changes.Little attention,however,has been paid to the reproductive organs-seeds,while seeds may maintain their nutrients more stable for the evolutionary fitness of next generation.Methods Here,we conducted a field experiment of N,P addition and drought in an alpine meadow,aiming to compare the difference of leaf and seed nutrients and stoichiometric ratios in response to these resource treatments and their interactions.Four dominant species were selected among grass and forb functional groups,including Elymus nutans,Deschampsia caespitosa,Artemisia roxburghiana and Polygonum viviparum.Results Under natural conditions,leaf N and P concentrations were consistently lower than seed among species.However,leaf nutrients were much more sensitive than seed nutrients to N and P addition.Specifically,N or P addition accordingly increased leaf N or P concentration by 22.20-44.24%and 85.54-93.61%,while only enhanced seed N or P concentration by 5.15-17.20%and 15.17-32.72%,respectively.Leaf N or P concentration was significantly reduced by P or N addition,but seed nutrients remained unchanged.In contrast,drought did not change both organ nutrients.Similarly,nutrient addition and drought had synergistic interactions on leaf nutrients,but not on seed nutrients.Conclusions This study highlights that seed nutrient concentrations could be more stable than metabolically active leaf organ when facing multidimensional resource changes.This complements the traditional view on the‘Stable Leaf Nutrient Hypothesis’with the involvement of reproductive organs.The less responsiveness of seed nutrients suggests the adaptive strategy to ensure the success of next generations and long-term plant demographic stability.展开更多
Aims To explore resorption efficiency of nitrogen(NrE)and phosphorus(PrE)of woody plants in relation to soil nutrient availability,climate and evolutionary history,in North China.Methods We measured concentrations of ...Aims To explore resorption efficiency of nitrogen(NrE)and phosphorus(PrE)of woody plants in relation to soil nutrient availability,climate and evolutionary history,in North China.Methods We measured concentrations of nitrogen([N])and phosphorus([P])in both full expanded mature green and senescent leaves of the same individuals for 88 woody species from 10 sites of mt.Dongling,beijing,China.We built a phylogenetic tree for all these species and compared NrE and PrE among life forms(trees,shrubs and woody lianas)and between functional groups(N-fixers and non-N-fixers).We then explored patterns of NrE and PrE along gradients of mean annual temperature(MAT),soil inorganic N and available P,and phylogeny using a general linear model.Important Findingsmass-based NrE(NrEm)and PrE(PrEm)averaged 57.4 and 61.4%,respectively,with no significant difference among life forms or functional groups.Neither NrEm nor PrEm exhibited significant phylogenetic signals,indicating that NrEm and PrEm were not phylogenetically conserved.NrEm was not related to[N]in green leaves;PrEm was positively correlated with[P]in green leaves;however,this relationship disappeared for different groups.NrEm decreased with[N]in senescent leaves,PrEm decreased with[P]in senescent leaves,for all species combined and for trees and shrubs.NrEm decreased with soil inorganic N for all species and for shrubs;PrEm did not exhibit a significant trend with soil available P for all species or for different plant groups.Neither NrEm nor PrEm was significantly related to MAT for overall species and for species of different groups.展开更多
文摘Under greenhouse conditions, a pot experiment was conducted to seek critical phosphorus concentrations of wheat genotypes with high and low phosphorus use efficiency. Results indicated that low efficient genotype was much more sensitive to phosphorus deficiency, with low or without phosphorus application, seed yield and dry matter of biomass were much lower. The yield of all the genotypes gradually got higher as application rate increased, but high efficient genotype——Lofflin produced relatively higher yields of seeds and biomass with low or without phosphorus input. Highly tolerate to low availability of soil phosphorus and efficient activation and absorption for soil unavailable phosphorus had been displayed. As application rates increased, yields of both genotypes were increased but high efficient genotype maintained stable while low efficient one showed continuously increase with remuneration decrease progressively. Critical phosphorus concentrations in high efficient genotypes of winter wheat were lower than that in low efficient ones and changed with various development stages, for example, at seedling state, the concentrations of high efficient genotype were 4.50—4.60 g/kg while low efficient one was 5.0 g/kg. They were 2.25—2.30 g/kg and 2.52 g/kg at flower stage, 1.96—2.05 g/kg and 2.15 g/kg at maturity respectively. But the values in seeds were reversal, higher in high efficient genotype(4.05—4.10 g/kg) than that in low efficient(3.90 g/kg). Therefore, phosphorus high efficient genotypes belong to the phosphorus resource saving type.
文摘The growth and interspecies competition of two red tide algal species Thalassiosira pseudonana Hasle et Heimdal and Gymnodinium sp. were studied under different concentration ratios of nitrogen to phosphorus, and the algal hatch culture experiments were conducted. The physiological and biochemical indexes were measured periodically, including the maximum comparing growth rate, relative growth rate, average double time and chlorophyll a concentration. The results showed that when the concentration ratio of nitrogen to phosphorus was 16: 1, the maximum comparing growth rate, relative growth rate and chlorophyll a concentration of Thalassiosira pseudonana all reached the highest,and average double time was the shortest. This implied that the optimal concentration ratio of nitrogen to phosphorus of Thalassiosira pseudonana is 16: 1. When the concentration ratio of nitrogen to phosphorus was 6:1, the maximum comparing growth rate, relative growth rate and the chlorophyll a concentration of Gymnodinium sp. reached the highest, and average double time was the shortest, so the optimal concentration ratio of nitrogen to phosphorus of Gymnodinium sp. is 6: 1. From the growth curves as indicated both in the cell density and the chlorophyll a concentration, it is suggested that the influence of concentration ratio of nitrogen to phosphorus on the chlorophyll a concentration and the cell density are almost the same. Different concentration ratios of nitrogen to phosphorus had weak influence on community succession and the competition between the two algae. Gymnodinium sp. may use the phosphorus in vivo for growth, so it is important to pay attention to the concealment of phosphorus, in order to avoid the outbreak of red tide. On the basis of the importance of nitrogen and phosphorus and the ratio of their concentration, the possible outbreak mechanism of red tide of the two algae was also discussed.
基金Project (2007J0012) supported by the Natural Science Foundation of Fujian Province, ChinaProject (2007HZ0005-2) supported by the Key Technological Program of Fujian Province, ChinaProject (BASIC-10341702) supported by Norwegian Research Council
文摘Elimination of phosphorus vaporizing from silicon was investigated. Si-P alloy made from electronic grade silicon was used. All the samples were analyzed by GD-MS. Theory calculation determines that phosphorus evaporates from molten silicon as gas species P and P2 at a finite reduced pressure. The experimental results show that phosphorus mass fraction can be decreased from 0.046% (460ppmw) to around 0.001% (10ppmw) under the condition of temperature 1 873 K, chamber pressure 0.6-0.8 Pa, holding time 1 h. Both experimental data and calculation results agree that at high phosphorus concentration, phosphorus removal is quite dependent on high chamber pressure while it becomes independent on low chamber pressure. The reason is that phosphorus evaporates from molten silicon as gas species P2 at a relatively high phosphorus concentration, while gas species P will be dominated in its vapour at low phosphorus content.
基金partially supported by Tianjin Marine Revitalization Plan of Science and Technology (No.KJXH2013-16) from Tianjin Oceanic Administration,China
文摘Microalgal lipids are regarded as main future feedstock of biofuels for its higher efficiency of accumulation and sus- tainable production. In order to investigate the effect of various nitrogen to phosphorus ratios on cells growth, chlorophyll content and accumulation of lipids in Dunaliella tertiolecta, experiments were carried out in modified microalgal medium with inorganic nitrogen (nitrate-nitrogen) or organic nitrogen (urea-nitrogen) as the sole nitrogen source at initial N:P ratios ranging from 1:1 to 32:1. The favorable N:P of 16:1 in the nitrate-N or urea-N medium yielded the maximum cell density and specific growth rate. Decrease in chlorophyll content were observed at the N:P of 4:1 in both nitrate-N and urea-N cultures. It was also observed that the maximum lipids concentration was obtained at the N:P of 4:1 in both nitrate and urea nutrient medium. The lipid productivity and lipid content of cultures in the urea-N medium at the N:P of 4: lwere markedly higher than those from cultures with other N:P ratios (p〈 0.05). The results of this work illustrate the possibility that higher ratios of nitrogen to phosphorus have enhancing effect on cells growth of D. tertiolecta. Conversely, higher lipid accumulation is associated with a decrease in chlorophyll content under lower ratios of nitro- gen to phosphorus. The results confirm the hypothesis of this study that a larger metabolic flux has been channeled to lipid accumu- lation in D. tertiolecta cells when the ratios of nitrogen to phosphorus drop below a critical level.
基金the National Natural Science Foundation of China (Grant Nos. 10972134, 11032007)the Shanghai Program for Innovative Research Team in Universities
文摘In this paper, the bottom of the Dianshan Lake was selected as a test sample. The dynamic release of contaminated sediments into the overlying water column was experimentally investigated in an open water channel under different hydrodynamic conditions. The experimental results indicate that the Total Phosphorus (TP) release process can be divided into three stages: rapid release, slow release and equilibration release. In the initial release stage the measured TP concentration changes along the depth. The TP concentration near the sediment-water interface is higher than that near the water surface, but the TP concentration becomes uniform along the depth after 3 h. The dynamic release of re-suspension sediment pollutants is about 6 times higher than the static release of sediment-water interface. There are three main types of release mechanism: diffusion release, re-suspended pore water mixing release and re-suspended particles desorbing release.
基金The Natural Science Foundation of China(32271636)the“Kezhen-Bingwei”Young Talents(2020RC003)+1 种基金the Youth Innovation Promotion Association(Grant No.2021050)National Forestry and Grassland Administration Youth Talent Support Program.
文摘Background It has been long thought that nitrogen(N),phosphorus(P)concentrations and their ratios(N:P)in metabolically active or functional organs(i.e.,leaves)are less responsive to environmental changes.Little attention,however,has been paid to the reproductive organs-seeds,while seeds may maintain their nutrients more stable for the evolutionary fitness of next generation.Methods Here,we conducted a field experiment of N,P addition and drought in an alpine meadow,aiming to compare the difference of leaf and seed nutrients and stoichiometric ratios in response to these resource treatments and their interactions.Four dominant species were selected among grass and forb functional groups,including Elymus nutans,Deschampsia caespitosa,Artemisia roxburghiana and Polygonum viviparum.Results Under natural conditions,leaf N and P concentrations were consistently lower than seed among species.However,leaf nutrients were much more sensitive than seed nutrients to N and P addition.Specifically,N or P addition accordingly increased leaf N or P concentration by 22.20-44.24%and 85.54-93.61%,while only enhanced seed N or P concentration by 5.15-17.20%and 15.17-32.72%,respectively.Leaf N or P concentration was significantly reduced by P or N addition,but seed nutrients remained unchanged.In contrast,drought did not change both organ nutrients.Similarly,nutrient addition and drought had synergistic interactions on leaf nutrients,but not on seed nutrients.Conclusions This study highlights that seed nutrient concentrations could be more stable than metabolically active leaf organ when facing multidimensional resource changes.This complements the traditional view on the‘Stable Leaf Nutrient Hypothesis’with the involvement of reproductive organs.The less responsiveness of seed nutrients suggests the adaptive strategy to ensure the success of next generations and long-term plant demographic stability.
基金National Basic Research Program of China on Global Change(2010CB950600 and 2014CB954004)National Natural Science Foundation of China(31321061 and 31330012)the‘Strategic Priority Research Program’of the Chinese Academy of Sciences(XDA05050300).
文摘Aims To explore resorption efficiency of nitrogen(NrE)and phosphorus(PrE)of woody plants in relation to soil nutrient availability,climate and evolutionary history,in North China.Methods We measured concentrations of nitrogen([N])and phosphorus([P])in both full expanded mature green and senescent leaves of the same individuals for 88 woody species from 10 sites of mt.Dongling,beijing,China.We built a phylogenetic tree for all these species and compared NrE and PrE among life forms(trees,shrubs and woody lianas)and between functional groups(N-fixers and non-N-fixers).We then explored patterns of NrE and PrE along gradients of mean annual temperature(MAT),soil inorganic N and available P,and phylogeny using a general linear model.Important Findingsmass-based NrE(NrEm)and PrE(PrEm)averaged 57.4 and 61.4%,respectively,with no significant difference among life forms or functional groups.Neither NrEm nor PrEm exhibited significant phylogenetic signals,indicating that NrEm and PrEm were not phylogenetically conserved.NrEm was not related to[N]in green leaves;PrEm was positively correlated with[P]in green leaves;however,this relationship disappeared for different groups.NrEm decreased with[N]in senescent leaves,PrEm decreased with[P]in senescent leaves,for all species combined and for trees and shrubs.NrEm decreased with soil inorganic N for all species and for shrubs;PrEm did not exhibit a significant trend with soil available P for all species or for different plant groups.Neither NrEm nor PrEm was significantly related to MAT for overall species and for species of different groups.