In order to reasonably utilize the abundant resources of high-phosphorus iron ore and ilmenite in China, the technology of top-blown smelting reduction with oxygen enrichment was used to smelt the mixed ore of high-ph...In order to reasonably utilize the abundant resources of high-phosphorus iron ore and ilmenite in China, the technology of top-blown smelting reduction with oxygen enrichment was used to smelt the mixed ore of high-phosphorus iron and ilmenite. The effect, which is related to basicity, reduction temperature, carbon-oxygen ratio and time of ventilated oxygen to iron recovery, dephosphorization rate, content of iron, phosphorus, sulfur and titanium in pig iron, was investigated in the experiment. The results show that an ideal outcome can be gained in condition of 6:4 ration on Mengqiao concentrate and Huimin iron ore, temperature of 1 500℃, basicity of 1.3, 1.0 on molar ration of carbon to oxygen, time of 10 min on blowing-oxygen. The outcome is that there is no foamy slag in generation, a good separation of slag and iron, iron recovery with 91.41%, content of phosphorus with 0.27% and tilanium content less than 0.001%, The atmosphere of strong oxidizing in the upper of reduction container and high potential of oxygen in the composition of slag in this technique bring phosphorus, titanium and silicon into slag, which ensures less content of impurity in pig iron.展开更多
Potassium and phosphate were extracted at low temperature by acid hydrolysis process to decompose a new type of associated phosphorus and potassium ore. The main factors affecting the dissolution rate were investigate...Potassium and phosphate were extracted at low temperature by acid hydrolysis process to decompose a new type of associated phosphorus and potassium ore. The main factors affecting the dissolution rate were investigated, such as grinding fineness, the amount of sulfuric acid and fluoride salt, reaction time and temperature, etc. Meanwhile, the effects of various factors on the formation of soluble potassium and phosphate were also discussed. The reaction products and residues were determined by X-ray diffraction(XRD), scanning electron microscopic(SEM) analysis and other means. The results showed that the dissolution rates of potassium and phosphorus were 70wt% and 93.7wt%, respectively, under the conditions of a grain size of 95.64wt% lessthan 0.074 mm, 9.78 g·g^(-1) sulfuric acid, 0.5 g·g^(-1) ammonium fluoride, 160 ℃ and a reaction time of 2h. The thermodynamic and chemical reaction mechanism was revealed that the primary reaction could be completed spontaneously in a temperature range of 298-433 K. The increase of reaction temperature had an important influence on ion exchange reaction, which was more conducive to the spontaneous process. The research will open up a new way for efficient use of potassium ore resources.展开更多
A new method (gas-based separation plus melt separation) has been proposed to remove phosphorus of the high phosphorus iron ore which was 1.25 % of phosphorus content and 50. 0% of iron content. HSC chemistry packag...A new method (gas-based separation plus melt separation) has been proposed to remove phosphorus of the high phosphorus iron ore which was 1.25 % of phosphorus content and 50. 0% of iron content. HSC chemistry package and the coexistence theory of slag structure were adopted for theoretical analysis. The gas-based reduction was carried out using a fixed bed reactor and the ore sample of 80 g with an average particle size of 2 mm were reduced using CO or H2 at temperature of 1 073 K for 5 hours. 50 g of the reduced sample with 3.0% CaO as additive was then subjected to melt separation in an electric furnace at temperature of 1 873 K under Ar atmosphere. In each run, SEM, EDS, optical microscopic examination and chemical analysis of the reduced ore sample, the metal sample and the slag sample were conducted. Results of all gas-based reduction experiments showed that iron metallization ratios were some 65% and the phosphorus compounds in the ore remained unchanged. It was agreed well with the simula- tions except for the iron metallization rate being less than predicted value; this difference was attributed to kinetics. Results of melt separation experiments showed that P content in metal samples is 0.33% (metal sample from H2 reduction product) and 0.27% (metal sample from CO reduction product). The phosphorus partition ratios of both cases were less than predicted values. Some P in the metal samples existed as slag inclusion was considered to be the reason for this discrepancy.展开更多
Gaseous reduction kinetics of the high phosphorus iron ore fines from Hubei in China and effect of microwave pretreatment on the gaseous reduction behavior were studied. Gaseous reduction kinetics were investigated by...Gaseous reduction kinetics of the high phosphorus iron ore fines from Hubei in China and effect of microwave pretreatment on the gaseous reduction behavior were studied. Gaseous reduction kinetics were investigated by TG (Thermogravimetric) methods using LINSEIS STA PT 1600 thermal analysis equipment. Microwave pretreatments to the ore fines with four power levels were performed using a high temperature microwave reactor. Its effect was examined by TG methods and its mechanism was analyzed by SEM (scanning electron microscope) and EDS (energy dispersive spectrometer). Gaseous reduction tests were carried out using a tubular furnace. Results of kinetic study indicate that controlling step of the gaseous reduction of the ore fines is a mixing control of gas internal diffusion and interface chemical reaction when reduction fraction is less than 0.8 and is solid state diffusion when reduction fraction is more than 0.8. Microwave pretreatment of the ore fines could change the pore structure of the oolitic unit to generate cracks, fissures and loose zones, which promotes reduction in the early stage and delays the occurrence of sintering. Gaseous reduction tests show in the condition that the ore fines are pretreated with a microwave power of 450 W for 4 min and reduced under temperature of 1 273 K, the gaseous reduction of the ore fines could be apparently intensified. Using CO or H2 as a reductant and ore fines being reduced for 1.5 to 2 h , increase of metallization rate of the ore fines is 10% to 13%.展开更多
Zhijin phosphorus ore is a moderate and low-grade phosphorus rare-earth ore contained in mines. The separation and extraction of associated rare earth are important research topics. In this study, the migration behavi...Zhijin phosphorus ore is a moderate and low-grade phosphorus rare-earth ore contained in mines. The separation and extraction of associated rare earth are important research topics. In this study, the migration behavior of rare earth during the thermal decomposition of Zhijin phosphorus ore and the separation and extraction of rare earth in phosphorus slag are discussed systematically. During the thermal decomposition process of phosphorus ore, almost all of the associated rare earth enters into the phosphorus slag phase but does not enter into the ferrophosphorus or gas phases. Amorphous calcium metasilicate and calcium fluosilicate are major components of phosphorus slag, and rare earth mainly exists as a calsil solid solution. Hydrochloric acid was used for acidolysis of the phosphorous slag. Under the following conditions, 96% of the rare earth in the phosphorous slag can be dissolved in the acidolysis solution: acid excess coefficient of 1.5, reaction time of 50 min and reaction temperature of 50℃. The rare earth in the acidolysis solution was separated and recycled using oxalic acid as a precipitator and NaOH as a pH modifier. At pH of 1.7, rare-earth-enriched matter with rare-earth content of 2.1 wt% was obtained, and the recovery of the rare earth was 88%.展开更多
基金Project(51064015) supported by the National Natural Science Foundation of ChinaProject(ZD2010001) supported by the Key Project of Yunnan Province Education of China
文摘In order to reasonably utilize the abundant resources of high-phosphorus iron ore and ilmenite in China, the technology of top-blown smelting reduction with oxygen enrichment was used to smelt the mixed ore of high-phosphorus iron and ilmenite. The effect, which is related to basicity, reduction temperature, carbon-oxygen ratio and time of ventilated oxygen to iron recovery, dephosphorization rate, content of iron, phosphorus, sulfur and titanium in pig iron, was investigated in the experiment. The results show that an ideal outcome can be gained in condition of 6:4 ration on Mengqiao concentrate and Huimin iron ore, temperature of 1 500℃, basicity of 1.3, 1.0 on molar ration of carbon to oxygen, time of 10 min on blowing-oxygen. The outcome is that there is no foamy slag in generation, a good separation of slag and iron, iron recovery with 91.41%, content of phosphorus with 0.27% and tilanium content less than 0.001%, The atmosphere of strong oxidizing in the upper of reduction container and high potential of oxygen in the composition of slag in this technique bring phosphorus, titanium and silicon into slag, which ensures less content of impurity in pig iron.
基金Funded by the National Natural Science Fundation of China(51274158)the National Twelfth Five-Year Plan for Scientific and Technological Support(2013BAE04B03)the Scientific and Technological Support Project of Hubei Province(2015BCA251)
文摘Potassium and phosphate were extracted at low temperature by acid hydrolysis process to decompose a new type of associated phosphorus and potassium ore. The main factors affecting the dissolution rate were investigated, such as grinding fineness, the amount of sulfuric acid and fluoride salt, reaction time and temperature, etc. Meanwhile, the effects of various factors on the formation of soluble potassium and phosphate were also discussed. The reaction products and residues were determined by X-ray diffraction(XRD), scanning electron microscopic(SEM) analysis and other means. The results showed that the dissolution rates of potassium and phosphorus were 70wt% and 93.7wt%, respectively, under the conditions of a grain size of 95.64wt% lessthan 0.074 mm, 9.78 g·g^(-1) sulfuric acid, 0.5 g·g^(-1) ammonium fluoride, 160 ℃ and a reaction time of 2h. The thermodynamic and chemical reaction mechanism was revealed that the primary reaction could be completed spontaneously in a temperature range of 298-433 K. The increase of reaction temperature had an important influence on ion exchange reaction, which was more conducive to the spontaneous process. The research will open up a new way for efficient use of potassium ore resources.
基金Sponsored by National Natural Science Foundation of China and Baosteel(50834007)
文摘A new method (gas-based separation plus melt separation) has been proposed to remove phosphorus of the high phosphorus iron ore which was 1.25 % of phosphorus content and 50. 0% of iron content. HSC chemistry package and the coexistence theory of slag structure were adopted for theoretical analysis. The gas-based reduction was carried out using a fixed bed reactor and the ore sample of 80 g with an average particle size of 2 mm were reduced using CO or H2 at temperature of 1 073 K for 5 hours. 50 g of the reduced sample with 3.0% CaO as additive was then subjected to melt separation in an electric furnace at temperature of 1 873 K under Ar atmosphere. In each run, SEM, EDS, optical microscopic examination and chemical analysis of the reduced ore sample, the metal sample and the slag sample were conducted. Results of all gas-based reduction experiments showed that iron metallization ratios were some 65% and the phosphorus compounds in the ore remained unchanged. It was agreed well with the simula- tions except for the iron metallization rate being less than predicted value; this difference was attributed to kinetics. Results of melt separation experiments showed that P content in metal samples is 0.33% (metal sample from H2 reduction product) and 0.27% (metal sample from CO reduction product). The phosphorus partition ratios of both cases were less than predicted values. Some P in the metal samples existed as slag inclusion was considered to be the reason for this discrepancy.
基金Sponsored by National Natural Science Foundation of China(51144010)
文摘Gaseous reduction kinetics of the high phosphorus iron ore fines from Hubei in China and effect of microwave pretreatment on the gaseous reduction behavior were studied. Gaseous reduction kinetics were investigated by TG (Thermogravimetric) methods using LINSEIS STA PT 1600 thermal analysis equipment. Microwave pretreatments to the ore fines with four power levels were performed using a high temperature microwave reactor. Its effect was examined by TG methods and its mechanism was analyzed by SEM (scanning electron microscope) and EDS (energy dispersive spectrometer). Gaseous reduction tests were carried out using a tubular furnace. Results of kinetic study indicate that controlling step of the gaseous reduction of the ore fines is a mixing control of gas internal diffusion and interface chemical reaction when reduction fraction is less than 0.8 and is solid state diffusion when reduction fraction is more than 0.8. Microwave pretreatment of the ore fines could change the pore structure of the oolitic unit to generate cracks, fissures and loose zones, which promotes reduction in the early stage and delays the occurrence of sintering. Gaseous reduction tests show in the condition that the ore fines are pretreated with a microwave power of 450 W for 4 min and reduced under temperature of 1 273 K, the gaseous reduction of the ore fines could be apparently intensified. Using CO or H2 as a reductant and ore fines being reduced for 1.5 to 2 h , increase of metallization rate of the ore fines is 10% to 13%.
基金Project supported by Key Industrial Engineering Project of Guizhou Province([2013]3041)High-level Talent Project of Guizhou Province(TZJF-2011-54)Guizhou Science and Technology Support Plan Project([2017]2892)
文摘Zhijin phosphorus ore is a moderate and low-grade phosphorus rare-earth ore contained in mines. The separation and extraction of associated rare earth are important research topics. In this study, the migration behavior of rare earth during the thermal decomposition of Zhijin phosphorus ore and the separation and extraction of rare earth in phosphorus slag are discussed systematically. During the thermal decomposition process of phosphorus ore, almost all of the associated rare earth enters into the phosphorus slag phase but does not enter into the ferrophosphorus or gas phases. Amorphous calcium metasilicate and calcium fluosilicate are major components of phosphorus slag, and rare earth mainly exists as a calsil solid solution. Hydrochloric acid was used for acidolysis of the phosphorous slag. Under the following conditions, 96% of the rare earth in the phosphorous slag can be dissolved in the acidolysis solution: acid excess coefficient of 1.5, reaction time of 50 min and reaction temperature of 50℃. The rare earth in the acidolysis solution was separated and recycled using oxalic acid as a precipitator and NaOH as a pH modifier. At pH of 1.7, rare-earth-enriched matter with rare-earth content of 2.1 wt% was obtained, and the recovery of the rare earth was 88%.