The thermodynamic equilibrium diagrams of Mg2+- 3-4PO - +4NH -H2O system at 298 K were established based on the thermodynamic calculation. From the diagram, the thermodynamic conditions for removing phosphorus from ...The thermodynamic equilibrium diagrams of Mg2+- 3-4PO - +4NH -H2O system at 298 K were established based on the thermodynamic calculation. From the diagram, the thermodynamic conditions for removing phosphorus from the tungstate solution by magnesium salt precipitation were obtained. The results show that when the concentration of total magnesium increases from 0.01 mol/L to 1.0 mol/L, the optimal pH for the phosphorus removal by magnesium phosphate decreases from 9.8 to 8.8. The residual concentration of total phosphorus almost keeps the level of 4.0×10-6 mol/L in the system. MgHPO4, Mg3(PO4)2 and the mixture of Mg3(PO4)2 and Mg(OH)2 are stabilized in these system, respectively. However, increasing the total concentration of magnesium has little effect on phosphorus removal by magnesium ammonium phosphate, while it is helpful for phosphorus removal by increasing the total ammonia concentration. The calculated results demonstrate that the residual concentration of total phosphorus can decrease to 5.0×10-7 mol/L as the total concentration of ammonia reaches 5.0 mol/L and the optimal pH value is 9-10. Finally, verification experiments were conducted with home-made ammonium tungstate solution containing 50 g/L WO3 and 13 g/L P. The results show that when the dosage of MgCl2 is 1.1 times of the theoretical amount, the optimum pH for removing phosphorus is 9.5, which matches with the results of the theoretical calculation exactly.展开更多
The need for an advanced and even far reaching phosphorus removal at municipal WWTPs may soon get stipulations in relation to a reuse of phosphorus (P). This paper discusses the possible ways to remove phosphorous fro...The need for an advanced and even far reaching phosphorus removal at municipal WWTPs may soon get stipulations in relation to a reuse of phosphorus (P). This paper discusses the possible ways to remove phosphorous from municipal wastewater. This is already an established demand in many countries. However, as P is a limited raw material, this need for a reuse of P will become an example of what now is labelled “cyclic economy”. For instance, a national demand from the German state is already put in force. In this perspective the advanced filtration techniques will play an interesting role, and most possibly a crucial role. Examples are presented from several municipal WWTPs already in operation with a final polishing treatment step based on chemical precipitation and separation of phosphorus. Typical stable discharge P levels are found at these plants at levels < 0.05 to 0.10 ppm. The new demands on phosphorus recovery will also call for modified process concepts for the WWTP;for instance, a refined biological phosphorus removal (EBP) attains more attention and he needed very low discharge levels of P, where the enhanced P-removal will include different smart filtration techniques.展开更多
基金Project(2012BAB10B04)supported by the National Key Technologies R&D Program of China
文摘The thermodynamic equilibrium diagrams of Mg2+- 3-4PO - +4NH -H2O system at 298 K were established based on the thermodynamic calculation. From the diagram, the thermodynamic conditions for removing phosphorus from the tungstate solution by magnesium salt precipitation were obtained. The results show that when the concentration of total magnesium increases from 0.01 mol/L to 1.0 mol/L, the optimal pH for the phosphorus removal by magnesium phosphate decreases from 9.8 to 8.8. The residual concentration of total phosphorus almost keeps the level of 4.0×10-6 mol/L in the system. MgHPO4, Mg3(PO4)2 and the mixture of Mg3(PO4)2 and Mg(OH)2 are stabilized in these system, respectively. However, increasing the total concentration of magnesium has little effect on phosphorus removal by magnesium ammonium phosphate, while it is helpful for phosphorus removal by increasing the total ammonia concentration. The calculated results demonstrate that the residual concentration of total phosphorus can decrease to 5.0×10-7 mol/L as the total concentration of ammonia reaches 5.0 mol/L and the optimal pH value is 9-10. Finally, verification experiments were conducted with home-made ammonium tungstate solution containing 50 g/L WO3 and 13 g/L P. The results show that when the dosage of MgCl2 is 1.1 times of the theoretical amount, the optimum pH for removing phosphorus is 9.5, which matches with the results of the theoretical calculation exactly.
文摘The need for an advanced and even far reaching phosphorus removal at municipal WWTPs may soon get stipulations in relation to a reuse of phosphorus (P). This paper discusses the possible ways to remove phosphorous from municipal wastewater. This is already an established demand in many countries. However, as P is a limited raw material, this need for a reuse of P will become an example of what now is labelled “cyclic economy”. For instance, a national demand from the German state is already put in force. In this perspective the advanced filtration techniques will play an interesting role, and most possibly a crucial role. Examples are presented from several municipal WWTPs already in operation with a final polishing treatment step based on chemical precipitation and separation of phosphorus. Typical stable discharge P levels are found at these plants at levels < 0.05 to 0.10 ppm. The new demands on phosphorus recovery will also call for modified process concepts for the WWTP;for instance, a refined biological phosphorus removal (EBP) attains more attention and he needed very low discharge levels of P, where the enhanced P-removal will include different smart filtration techniques.