期刊文献+
共找到246篇文章
< 1 2 13 >
每页显示 20 50 100
Environmental dynamics of nitrogen and phosphorus release from river sediments of arid areas
1
作者 SU Wenhao WU Chengcheng +4 位作者 Sun Xuanxuan LEI Rongrong LEI Li WANG Ling ZHU Xinping 《Journal of Arid Land》 SCIE CSCD 2024年第5期685-698,共14页
Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,cau... Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,causing secondary pollution of the river water.In this study,laboratory simulation experiments were conducted initially to investigate the release of nitrogen and phosphorus from river sediments in Urumqi City and the surrounding areas in Xinjiang Uygur Autonomous Region of China and determine the factors that influence their release.The results of this study showed significant short-term differences in nitrogen and phosphorus release characteristics from sediments at different sampling points.The proposed secondary kinetics model(i.e.,pseudo-second-order kinetics model)better fitted the release process of sediment nitrogen and phosphorus.The release of nitrogen and phosphorus from sediments is a complex process driven by multiple factors,therefore,we tested the influence of three factors(pH,temperature,and disturbance intensity)on the release of nitrogen and phosphorus from sediments in this study.The most amount of nitrate nitrogen(NO_(3)^(–)-N)was released under neutral conditions,while the most significant release of ammonia nitrogen(NH_(4)^(+)-N)occurred under acidic and alkaline conditions.The release of nitrite nitrogen(NO_(2)^(-)-N)was less affected by pH.The dissolved total phosphorus(DTP)released significantly in the alkaline water environment,while the release of dissolved organic phosphorus(DOP)was more significant in acidic water.The release amount of soluble reactive phosphorus(SRP)increased with an increase in pH.The sediments released nitrogen and phosphorus at higher temperatures,particularly NH_(4)^(+)-N,NO_(3)^(–)-N,and SRP.The highest amount of DOP was released at 15.0℃.An increase in disturbance intensity exacerbated the release of nitrogen and phosphorus from sediments.NH_(4)^(+)-N,DTP,and SRP levels increased linearly with the intensity of disturbance,while NO_(3)^(–)-N and NO_(2)^(–)-N were more stable.This study provides valuable information for protecting and restoring the water environment in arid areas and has significant practical reference value. 展开更多
关键词 SEDIMENT nitrogen and phosphorus environmental dynamics pseudo-second-order kinetics model dissolved organic phosphorus(DOP) Urumqi City
下载PDF
Correlation and Pathway Analysis of the Carbon,Nitrogen,and Phosphorus in Soil-Microorganism-Plant with Main Quality Components of Tea(Camellia sinensis)
2
作者 Chun Mao Ji He +3 位作者 Xuefeng Wen Yangzhou Xiang Jihong Feng Yingge Shu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期487-502,共16页
The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.Howev... The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.However,few studies have quantified the effects of these factors on the main quality components of tea.The study aimed to explore the interactions of C,N,and P in soil-microorganisms-plants and the effects of these factors on the main quality components of tea by using the path analysis method.The results indicated that(1)The contents of C,N,and P in soil,microorganisms,and tea plants were highly correlated and collinear,and showed significant correlations with the main quality components of tea.(2)Optimal regression equations were established to esti-mate tea polyphenol,amino acid,catechin,caffeine,and water extract content based on C,N,and P contents in soil,microorganisms,and tea plants(R^(2)=0.923,0.726,0.954,0.848,and 0.883,respectively).(3)Pathway analysis showed that microbial biomass phosphorus(MBP),root phosphorus,branch nitrogen,and microbial biomass carbon(MBC)were the largest direct impact factors on tea polyphenol,catechin,water extracts,amino acid,and caffeine content,respectively.Leaf carbon,root phosphorus,and leaf nitrogen were the largest indirect impact factors on tea polyphenol,catechin,and water extract content,respectively.Leaf carbon indirectly affected tea polyphenol content mainly by altering MBP content.Root phosphorus indirectly affected catechin content mainly by altering soil organic carbon content.Leaf nitrogen indirectly affected water extract content mainly by altering branch nitrogen content.The research results provide the scientific basis for reasonable fertilization in tea gardens and tea quality improvement. 展开更多
关键词 Soil-microorganisms-plant system CARBON nitrogen phosphorus tea quality path analysis
下载PDF
Effects of tree size and organ age on variations in carbon,nitrogen,and phosphorus stoichiometry in Pinus koraiensis
3
作者 Yanjun Wang Guangze Jin Zhili Liu 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期155-165,共11页
Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutr... Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutrients vary with tree size,organ age,or root order at the individual level remains limited.We determined C,N,and P contents and their stoichiometric ratios(i.e.,nutrient traits)in needles,branches,and fine roots at different organ ages(0-3-year-old needles and branches)and root orders(1st-4th order roots)from 64 Pinus koraiensis of varying size(Diameter at breast height ranged from 0.3 to 100 cm)in northeast China.Soil factors were also measured.The results show that nutrient traits were regulated by tree size,organ age,or root order rather than soil factors.At a whole-plant level,nutrient traits decreased in needles and fine roots but increased in branches with tree size.At the organ level,age or root order had a negative effect on C,N,and P and a positive effect on stoichiometric ratios.Our results demonstrate that nutrient variations are closely related to organ-specific functions and ecophysiological processes at an individual level.It is suggested that the nutrient acquisition strategy by younger trees and organ fractions with higher nutrient content is for survival.Conversely,nutrient storage strategy in older trees and organ fractions are mainly for steady growth.Our results clarified the nutrient utilization strategies during tree and organ ontogeny and suggest that tree size and organ age or root order should be simultaneously considered to understand the complexities of nutrient variations. 展开更多
关键词 Tree size Organ age(or root order) Carbon(C) nitrogen(N) phosphorus(P) Pinus koraiensis
下载PDF
Nitrogen and Phosphorus Removal from Lake Kinneret Inputs
4
作者 Moshe Gophen 《Open Journal of Ecology》 2024年第2期165-182,共18页
The Hula Valley was drained in 1957. The land use was modified from natural wetland and old shallow lake ecosystems to agricultural development. About half of the drained land area was utilized for aquaculture. Popula... The Hula Valley was drained in 1957. The land use was modified from natural wetland and old shallow lake ecosystems to agricultural development. About half of the drained land area was utilized for aquaculture. Population size was enhanced and the diary was developed intensively resulting in the enhancement of domestic and husbandry sewage production that increased as well. The natural intact Hula Valley-Lake Kinneret ecosystem was heavily anthropogenically interrupted: The Hula was drained and Kinneret became a national source for domestic water supply. Some aspects of the environmental and water quality protection policy of the system are presented. The causation and operational management implications for the reduction of Nitrogen and Phosphorus migration from the Hula Valley are discussed. Drastic (81%) restriction of aquaculture accompanied by sewage totally removed achieved a reasonable improvement in pollution control which was also supported by the Hula Project. The implications of anthropogenic intervention in the process of environmental management design are presented. 展开更多
关键词 Hula Valley JORDAN Kinneret nitrogen phosphorus Peat Soil Fish Ponds Sewage Removal
下载PDF
Cu_(3)P nanoparticles confined in nitrogen/phosphorus dual-doped porous carbon nanosheets for efficient potassium storage 被引量:3
5
作者 Yuanxing Yun Baojuan Xi +5 位作者 Yu Gu Fang Tian Weihua Chen Jinkui Feng Yitai Qian Shenglin Xiong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期339-347,I0009,共10页
Immobilizing primary electroactive nanomaterials in porous carbon matrix is an effective approach for boosting the electrochemical performance of potassium-ion batteries (PIBs) because of the synergy among functional ... Immobilizing primary electroactive nanomaterials in porous carbon matrix is an effective approach for boosting the electrochemical performance of potassium-ion batteries (PIBs) because of the synergy among functional components. Herein, an integrated hybrid architecture composed of ultrathin Cu_(3)P nanoparticles (~20 nm) confined in porous carbon nanosheets (Cu_(3)P⊂NPCSs) as a new anode material for PIBs is synthesized through a rational self-designed self-templating strategy. Benefiting from the unique structural advantages including more active heterointerfacial sites, intimate and stable electrical contact, effectively relieved volume change, and rapid K^(+) ion migration, the Cu_(3)P⊂NPCSs indicate excellent potassium-storage performance involving high reversible capacity, exceptional rate capability, and cycling stability. Moreover, the strong adsorption of K^(+) ions and fast potassium-ion reaction kinetics in Cu_(3)P⊂NPCSs is verified by the theoretical calculation investigation. Noted, the intercalation mechanism of Cu_(3)P to store potassium ions is, for the first time, clearly confirmed during the electrochemical process by a series of advanced characterization techniques. 展开更多
关键词 Cu_(3)P Potassium-ion batteries nitrogen/phosphorus dual-doped porous carbon sheets Intercalation mechanism Heterointerface
下载PDF
Drip fertigation and plant hedgerows significantly reduce nitrogen and phosphorus losses and maintain high fruit yields in intensive orchards 被引量:3
6
作者 SONG Ke QIN Qin +5 位作者 YANG Ye-feng SUN Li-juan SUN Ya-fei ZHENG Xian-qing Lü Wei-guang XUE Yong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第2期598-610,共13页
A field experiment was carried out to evaluate the effects of drip fertigation combined with plant hedgerows on nitrogen and phosphorus runoff losses in intensive pear orchards in the Tai Lake Basin.Nitrogen and phosp... A field experiment was carried out to evaluate the effects of drip fertigation combined with plant hedgerows on nitrogen and phosphorus runoff losses in intensive pear orchards in the Tai Lake Basin.Nitrogen and phosphorus runoff over a whole year were measured by using successional runoff water collection devices.The four experimental treatments were conventional fertilization(CK),drip fertigation(DF),conventional fertilization combined with plant hedgerows(C+H),and drip fertigation combined with plant hedgerows(D+H).The results from one year of continuous monitoring showed a significant positive correlation between precipitation and surface runoff discharge.Surface runoff discharge under the treatments without plant hedgerows totaled 15.86%of precipitation,while surface runoff discharge under the treatments with plant hedgerows totaled 12.82%of precipitation.Plant hedgerows reduced the number of runoff events and the amount of surface runoff.Precipitation is the main driving force for the loss of nitrogen and phosphorus in surface runoff,and fertilization is an important factor affecting the losses of nitrogen and phosphorus.In CK,approximately 7.36%of nitrogen and 2.63%of phosphorus from fertilization entered the surface water through runoff.Drip fertigation reduced the accumulation of nitrogen and phosphorus in the surface soil and lowered the runoff loss concentrations of total nitrogen(TN)and total phosphorus(TP).Drip fertigation combined with plant hedgerows significantly reduced the overall TN and TP losses by 45.38 and 36.81%,respectively,in comparison to the CK totals.Drip fertigation increased the vertical migration depth of nitrogen and phosphorus nutrients and reduced the accumulation of nitrogen and phosphorus in the surface soil,which increased the pear yield.The promotion of drip fertigation combined with plant hedgerows will greatly reduce the losses of nitrogen and phosphorus to runoff and maintain the high fruit yields in the intensive orchards of the Tai Lake Basin. 展开更多
关键词 drip fertigation plant hedgerows surface runoff nitrogen and phosphorus losses fruit yields
下载PDF
Effects of nitrogen and phosphorus additions on soil microbial community structure and ecological processes in the farmland of Chinese Loess Plateau
7
作者 KOU Zhaoyang LI Chunyue +5 位作者 CHANG Shun MIAO Yu ZHANG Wenting LI Qianxue DANG Tinghui WANG Yi 《Journal of Arid Land》 SCIE CSCD 2023年第8期960-974,共15页
Microorganisms regulate the responses of terrestrial ecosystems to anthropogenic nutrient inputs.The escalation of anthropogenic activities has resulted in a rise in the primary terrestrial constraining elements,namel... Microorganisms regulate the responses of terrestrial ecosystems to anthropogenic nutrient inputs.The escalation of anthropogenic activities has resulted in a rise in the primary terrestrial constraining elements,namely nitrogen(N)and phosphorus(P).Nevertheless,the specific mechanisms governing the influence of soil microbial community structure and ecological processes in ecologically vulnerable and delicate semi-arid loess agroecosystems remain inadequately understood.Therefore,we explored the effects of different N and P additions on soil microbial community structure and its associated ecological processes in the farmland of Chinese Loess Plateau based on a 36-a long-term experiment.Nine fertilization treatments with complete interactions of high,medium,and low N and P gradients were set up.Soil physical and chemical properties,along with the microbial community structure were measured in this study.Additionally,relevant ecological processes such as microbial biomass,respiration,N mineralization,and enzyme activity were quantified.To elucidate the relationships between these variables,we examined correlation-mediated processes using statistical techniques,including redundancy analysis(RDA)and structural equation modeling(SEM).The results showed that the addition of N alone had a detrimental effect on soil microbial biomass,mineralized N accumulation,andβ-1,4-glucosidase activity.Conversely,the addition of P exhibited an opposing effect,leading to positive influences on these soil parameters.The interactive addition of N and P significantly changed the microbial community structure,increasing microbial activity(microbial biomass and soil respiration),but decreasing the accumulation of mineralized N.Among them,N24P12 treatment showed the greatest increase in the soil nutrient content and respiration.N12P12 treatment increased the overall enzyme activity and total phospholipid fatty acid(PLFA)content by 70.93%.N and P nutrient contents of the soil dominate the microbial community structure and the corresponding changes in hydrolytic enzymes.Soil microbial biomass,respiration,and overall enzyme activity are driven by mineralized N.Our study provides a theoretical basis for exploring energy conversion processes of soil microbial community and environmental sustainability under long-term N and P additions in semi-arid loess areas. 展开更多
关键词 nitrogen and phosphorus additions microbial community structure farmland ecosystem nitrogen mineralization soil enzyme activity
下载PDF
Effects of Different Nitrogen and Phosphorus Synergistic Fertilizer on Enzymes and Genes Related to Nitrogen Metabolism in Wheat
8
作者 Yajun Li Yihui Wang +2 位作者 Shuang Chen Yu Gao Yan Shi 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第7期2151-2164,共14页
In recent years,in order to improve nutrient use efficiency,especially nitrogen use efficiency,fertilizer valueadded technology has been developed rapidly.However,the mechanism of the effect of synergistic fertilizer ... In recent years,in order to improve nutrient use efficiency,especially nitrogen use efficiency,fertilizer valueadded technology has been developed rapidly.However,the mechanism of the effect of synergistic fertilizer on plant nitrogen utilization is not clear.A study was,therefore,conducted to explore the activities and gene expression of key enzymes for nitrogen assimilation and the gene expression of nitrogen transporters in wheat after the application of synergistic fertilizer.Soil column experiment was set up in Qingdao Agricultural University experimental base from October 2018 to June 2019.Maleic acid and itaconic acid were copolymerized with acrylic acid as cross-linking monomer to make a fluid gel,which was sprayed on the fertilizer surface to make nitrogen and phosphorus synergistic fertilizer.A total of 6 treatments was set according to different nitrogen and phosphorus fertilizer ratios:(1)100%common nitrogen fertilizer+100%common phosphate fertilizer(2)70%nitrogen synergistic fertilizer+100%phosphorus synergistic fertilizer;(3)100%nitrogen synergistic fertilizer+70%phosphorus synergistic fertilizer;(4)100%nitrogen synergistic fertilizer+100%phosphorus synergistic fertilizer;(5)70%nitrogen synergistic fertilizer+70%phosphorus synergistic fertilizer;(6)100%commercial nitrogen synergistic fertilizer+100%commercial phosphorus synergistic fertilizer.The results are as follows:(1)the enzyme activities of wheat plants under synergistic fertilizer condition were higher than those under ordinary fertilizer,except under the treatment that nitrogen and phosphorus synergistic fertilizer were both reduced;(2)the expression level of the genes under the treatment“100%nitrogen synergistic fertilizer+100%phosphorus synergistic fertilizer”was significantly higher than those in other treatments.Combined with the higher performance of nitrogen concentration in various parts of the plant under the condition of applying synergistic fertilizer,this study indicated that the application of synergistic fertilizer can improve the nitrogen metabolism of the plant by increasing the nitrogen level in the rhizosphere soil,inducing the expression of nitrogen transporter genes and key assimilation enzymes genes. 展开更多
关键词 nitrogen and phosphorus synergistic fertilizer nitrogen transporter gene nitrogen assimilation enzyme activity
下载PDF
Nitrogen/sulphur dual-doped hierarchical carbonaceous fibers boosting potassium-ion storage 被引量:1
9
作者 Junzhi Li Junming Cao +6 位作者 Xifei Li Junhua Hu Yaohui Zhang Hirbod Maleki Kheimeh Sari Chunxiao Lv IgorVZatovsky Wei Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期420-427,共8页
The carbon materials as anode electrodes have been widely studied for potassium ion batteries(PIBs).However,the large size of potassium ions prevents their intercalation/deintercalation,resulting in poor storage behav... The carbon materials as anode electrodes have been widely studied for potassium ion batteries(PIBs).However,the large size of potassium ions prevents their intercalation/deintercalation,resulting in poor storage behaviors.Herein,a novel design of N/S codoped hierarchical carbonaceous fibers(NSHCF)formed from nanosheets self-assembled by catalyzing Aspergillus niger with Sn is reported.The asprepared NSHCF at 600℃(NSHCF-600)exhibits a high reversible capacity of 345.4 m Ah g^(-1) at 0.1 A g^(-1) after 100 cycles and an excellent rate performance of 124.5 m Ah g^(-1) at 2 A g^(-1).The excellent potassium storage performance can be ascribed to the N/S dual-doping,which enlarges interlayer spacing(0.404 nm)and introduces more defects.The larger interlayer spacing and higher pyridinic N active sites can promote K ions diffusion and storage.In addition,the ex situ transmission electron microscopy reveals the high reversibility of potassiation/depotassiation process and structural stability. 展开更多
关键词 Carbonaceous fibers Large interlayer spacing nitrogen/sulphur dual-doping Potassium-ion batteries
下载PDF
Transgenic approaches for improving use efficiency of nitrogen, phosphorus and potassium in crops 被引量:13
10
作者 TENG Wan HE Xue TONG Yi-ping 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第12期2657-2673,共17页
The success of the Green Revolution largely relies on fertilizers, and a new Green Revolution is very much needed to use fertilizers more economically and efficiently, as well as with more environmental responsibility... The success of the Green Revolution largely relies on fertilizers, and a new Green Revolution is very much needed to use fertilizers more economically and efficiently, as well as with more environmental responsibility. The use efficiency of nitrogen, phosphorus, and potassium is controlled by complex gene networks that co-ordinate uptake, re-distribution, assimilation, and storage of these nutrients. Great progress has been made in breeding nutrient-efficient crops by molecularly engineering root traits desirable for efficient acquisition of nutrients from soil, transporters for uptake, redistribution and homeostasis of nutrients, and enzymes for efficient assimilation. Regulatory and transcription factors modulating these processes are also valuable in breeding crops with improved nutrient use efficiency and yield performance. 展开更多
关键词 nutrient use efficiency nitrogen phosphorus POTASSIUM transgenic approach crop
下载PDF
Nutritional strategies for reducing nitrogen, phosphorus and trace mineral excretions of livestock and poultry 被引量:14
11
作者 LU Lin LIAO Xiu-dong LUO Xu-gang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第12期2815-2833,共19页
Animal agriculture contributes to environmental pollutions through the surplus nitrogen(N), phosphorus(P), and trace minerals that animals excrete. Animal nutritionists have sought alternatives to formulate more e... Animal agriculture contributes to environmental pollutions through the surplus nitrogen(N), phosphorus(P), and trace minerals that animals excrete. Animal nutritionists have sought alternatives to formulate more efficient diets and reduce production costs and environmental concerns. In general, element excretions may be reduced by avoiding the overfeeding of specific elements or using nutritional approaches to improve element utilizations by the animals. Several nutritional strategies are possible for minimizing N, P, and trace mineral excretions: 1) to accurately meet dietary N, P and trace mineral requirements of animals, which includes reducing the dietary crude protein contents with synthetic amino acids or feeding high rumenally undegraded protein, minimizing the adequate levels of dietary P and trace elements, adopting phase or group-feeding program, and considering the bioavailable trace mineral contents in the feed ingredients; 2) to improve the bioavailabilities of dietary N, P, and trace elements for animals by using some additives(enzymes, growth promoters, probiotics, prebiotics, vitamin D isomers, and organic acids); 3) to use highly available P sources or organic trace elements. In the future, nutrient strategies must be integrated into total production systems so that animal production systems are environmentally safe as well as economically viable. 展开更多
关键词 nutritional strategies nitrogen phosphorus trace minerals animal excretions
下载PDF
Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system 被引量:35
12
作者 PENG Yongzhen HOU Hongxun +2 位作者 WANG Shuying CUI Youwei Zhiguo Yuan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第4期398-403,共6页
To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was... To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobicanoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (rSND) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and rSND dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NOx to NH4^+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3^- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified. 展开更多
关键词 oxidation ditch biological nitrogen removal biological phosphorus removal simultaneous nitrification and denitrification (SND) pilot scale municipal wastewater
下载PDF
Impact of Nitrogen, Phosphorus and Potassium on Brown Planthopper and Tolerance of Its Host Rice Plants 被引量:12
13
作者 Md Mamunur RASHID Mahbuba JAHAN Khandakar Shariful ISLAM 《Rice science》 SCIE CSCD 2016年第3期119-131,共13页
The brown planthopper(BPH),Nilaparvata lugens(St?l),appeared as a devastating pest of rice in Asia. Experiments were conducted to study the effects of three nutrients,nitrogen(N),phosphorus(P) and potassium(K),on BPH ... The brown planthopper(BPH),Nilaparvata lugens(St?l),appeared as a devastating pest of rice in Asia. Experiments were conducted to study the effects of three nutrients,nitrogen(N),phosphorus(P) and potassium(K),on BPH and its host rice plants. Biochemical constituents of BPH and rice plants with varying nutrient levels at different growth stages,and changes in relative water content(RWC) of rice plants were determined in the laboratory. Feeding of BPH and the tolerance of rice plants to BPH with different nutrient levels were determined in the nethouse. Concentrations of N and P were found much higher in the BPH body than in its host rice plants,and this elemental mismatch is an inherent constraint on meeting nutritional requirements of BPH. Nitrogen was found as a more limiting element for BPH than other nutrients in rice plants. Application of N fertilizers to the rice plants increased the N concentrations both in rice plants and BPH while application of P and K fertilizers increased their concentrations in plant tissues only but not in BPH. Nitrogen application also increased the level of soluble proteins and decreased silicon content in rice plants,which resulted in increased feeding of BPH with sharp reduction of RWC in rice plants ultimately caused susceptible to the pest. P fertilization increased the concentration of P in rice plant tissues but not changed N,K,Si,free sugar and soluble protein contents,which indicated little importance of P to the feeding of BPH and tolerance of plant against BPH. K fertilization increased K content but reduced N,Si,free sugar and soluble protein contents in the plant tissues which resulted in the minimum reduction of RWC in rice plants after BPH feeding,thereby contributed to higher tolerance of rice plants to brown planthopper. 展开更多
关键词 NILAPARVATA LUGENS relative water content HOST tolerance nitrogen phosphorus POTASSIUM rice nutrient subsidy
下载PDF
Effect of nitrogen and phosphorus on the water quality in the Three Gorges Reservoir Area during and after its construction 被引量:10
14
作者 LIUHong LIUHui-juan QUJiu-hui 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第3期358-363,共6页
A survey concerning the concentration of the nutrients in the Three Gorges Reservoir Area was carried out. This paper presents the parameters(NO 3 - N, NO 2 - N, Kjeldahl N, non ionic ammonia, P PO 4 and TP)... A survey concerning the concentration of the nutrients in the Three Gorges Reservoir Area was carried out. This paper presents the parameters(NO 3 - N, NO 2 - N, Kjeldahl N, non ionic ammonia, P PO 4 and TP) determined at 16 sampling sites from 1997 to 1999 The dominant soluble nitrogen form was NO 3 - N followed by Kjeldahl N, NO 2 - N and non ionic ammonia. Mean values of NO 3 - N, NO 2 - N, Kjeldahl N and non ionic ammonia ranged from 0 50 to 2 37 mg/L, 0 022 to 0 084 mg/L, 0 33 to 0 99 mg/L and 0 007 to 0 092 mg/L respectively. Mean values of P PO 4 at most sampling sites were higher than 0 1 mg/L for subject to eutrophication. The major factors influencing the concentrations of N and P might be agricultural runoff, municipal and industrial effluents. In addition, 6 kinds of soil were sampled at the area where would inundated after the dam completed. Two approaches were adopted to simulate the N and P release from the inundated soils. The results showed that the soils would release nitrogen and phosphorus to the overlying water when the soils were inundated. The characteristics of soil affected the equilibrium concentrations of N and P between the soil and the overlying water. 展开更多
关键词 Three Gorges Reservoir Area nitrogen phosphorus inundated soil
下载PDF
Effect of Inoculation with Arbuscular Mycorrhizal Fungus on Nitrogen and Phosphorus Utilization in Upland Rice-Mungbean Intercropping System 被引量:11
15
作者 XIAO Tong-jian YANG Qing-song RAN Wei XU Guo-hua SHEN Qi-rong 《Agricultural Sciences in China》 CAS CSCD 2010年第4期528-535,共8页
The effect of arbuscular mycorrhiza fungi (AMF) on plant growth and nutrition utilization in upland rice and mungbean intercropping system was studied. A pot experiment was conducted in the greenhouse and AMF coloni... The effect of arbuscular mycorrhiza fungi (AMF) on plant growth and nutrition utilization in upland rice and mungbean intercropping system was studied. A pot experiment was conducted in the greenhouse and AMF colonization rates of rice and mungbean roots, plant nutrient contents, the ability of nitrogen fixation, and nutrient contents changed in the soil were analyzed. The results were obtained as follows: the rates of AMF colonization of rice and mungbean roots were reached to 14.47 and 92.2% in intercopping system, and increased by 4.11 and 11.95% compared with that of in monocropping; the nirtrogen contents of mungbean and rice were increased by 83.72 and 64.83% in shoots, and 53.76 and 41.29% in roots, respectively, while the contents of iron in shoot and root of mungbean were increased by 223.08 and 60.19%, respectively. In the intercropping system with inoculation of AMF, the biomass of mungbean increased by 288.8%. However, the biomass of rice was not significantly changed among all treatments with or without inoculation of AMF recorded. The number and dry weight of nodules were significantly increased either when mungbean was intercropped with rice or inoculated with AMF. When compared with that of monocropping without AMF inoculation, the contents of nitrogen, phosphorus and iron in nodules of intercropping mungbean with inoculation increased by 80.14, 69.54 and 39.62%, respectively. Additionally, intercropping with AMF inoculation significantly increased soil nitrogen content, but reduced soil phosphorus content. We concluded that upland rice-mungbean intercropping system and inoculation with AMF improved the nutrient uptake, the ability of nitrogen fixation and the growth of mungbean. 展开更多
关键词 MUNGBEAN rice arbuscular mycorrhizal fungi (AMF) INTERCROPPING nitrogen phosphorus iron root nodule
下载PDF
Removal of nitrogen and phosphorus in a combined A^2/O-BAF system with a short aerobic SRT 被引量:15
16
作者 DING Yong-wei WANG Lin +1 位作者 WANG Bao-zhen WANG Zheng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第6期1082-1087,共6页
A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A^2/O-BAF) combined system was carded out to treat wastewater with lower C/N and C/P ratios. The A^2/O process was operated in a short aerobi... A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A^2/O-BAF) combined system was carded out to treat wastewater with lower C/N and C/P ratios. The A^2/O process was operated in a short aerobic sludge retention time (SRT) for organic pollutants and phosphorus removal, and denitrification. The subsequent BAF process was mainly used for nitrification. The BAF effluent was partially returned to anoxic zone of the A^2/O process to provide electron acceptors for denitrification and anoxic P uptake. This unique system formed an environment for reproducing the denitdfying phosphate-accumulating organisms (DPAOs). The ratio of DPAOs to phosphorus accumulating organisms (PAOs) could be maintained at 28% by optimizing the organic loads in the anaerobic zone and the nitrate loads into the anoxic zone in the A^2/O process. The aerobic phosphorus over-uptake and discharge of excess activated sludge was the main mechanism of phosphorus removal in the combined system. The aerobic SRT of the A^2/O process should meet the demands for the development of aerobic PAOs and the restraint on the nitrifiers growth, and the contact time in the aerobic zone of the A^2/O process should be longer than 30 min, which ensured efficient phosphorus removal in the combined system. The adequate BAF effluent return rates should be controlled with 1--4 mg/L nitrate nitrogen in the anoxic zone effluent of A^2/O process to achieve the optimal nitrogen and phosphorus removal efficiencies. 展开更多
关键词 nitrogen and phosphorus removal denitrifying phosphorus removal denitrifying phosphorus accumulating organisms (DPAOs) anaerobic/anoxic/aerobic process (A^2/O) biological aerated filter (BAF) aerobic sludge retention time (SRT)
下载PDF
Water,organic matter,nitrogen and phosphorus contents in sediment of a large-scale mariculture area in the Zhelin Bay of eastern Guangdong Province,China 被引量:5
17
作者 DONG Qiaoxiang LIN Junda +2 位作者 SHANG Xu LI Jin HUANG Changjiang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2008年第2期133-148,共16页
The Zhelin Bay is one of the most important bays for large-scale mariculture in Guangdong Province, China. Owing to the increasing human population and the expanding mariculture in the last two decades, the ecological... The Zhelin Bay is one of the most important bays for large-scale mariculture in Guangdong Province, China. Owing to the increasing human population and the expanding mariculture in the last two decades, the ecological environment has greatly changed with frequent harmful algal blooms. A monthly survey of water content, organic matter (TOM), and various forms of nitrogen and phosphorous in sediment from July 2002 to July 2003 in the bay was conducted. The results showed that the water content was correlated significantly with TOM and various forms of nitrogen and phosphorus and can be used as proxy for quick and rough estimate of these factors in the future surveys. TOM was also correlated significantly with various forms of nitrogen and phosphorus, indicating that it was one of the key factors affecting the concentrations and distributions of nitrogen and phosphorus in the investigated waters. Average total Kjeldhal nitrogen (TkN) content was( 1 113.1 ± 382.5)μg/g and average total phosphorus (TP) content was(567.2± 223.3)μg/g, and both were much higher than those of similar estuaries in China and elsewhere. Average nitrogen and phosphorus tended to be higher inside than outside the bay, higher at aquaculture than non-aquaculture areas, and higher at fish-cage culture than oyster culture areas, suggesting that large-scale mariculture inside the bay played an important role in the eutrophication of the Zhelin Bay. Various forms of nitrogen and phosphorus concentrations were higher during the warm season (July--September), which was due to the increased decomposition and concentration of organic matter resulted from the fast growth and high mortality of the cultured species. Compared with July 2002, TkN and TP contents were much higher in July 2003, in consonance with the eutrophication of the Zhelin Bay. Because exchangeable phosphorus (Ex-P), iron-bounded phos- phorus (Fe-P) and organic phosphorus (OP) combined accounted for 34.3% of the TP and authigenic phosphorus (Au-P) accounted for 49.2% of the TP, biological phosphorus (BP) that includes Ex-P, Fe-P, OP, and a portion of Au-P, thus accounted for 34.3% to 83.5% of the TP in the Zhelin Bay, which was within the percentage range, but with a high absolute value among the estuaries. Au-P was the most important species of phosphorus and accounted for 49.2% of the TP during the investigation. Since eutrophication in the water column can lead to reduction of pH in sediment and release of phosphorus in Au-P combined with authigenic spodiosite and calcium carbonate, high content of Au-P in the sediment maybe act as a time bomb that can trigger a vicious cycle of eutrophication and large-scale harmful algal bloom in the Zhelin Bay. 展开更多
关键词 Zhelin Bay SEDIMENT nitrogen phosphorus water content organic matter
下载PDF
Removal of Nitrogen, Phosphorus, and Organic Pollutants From Water Using Seeding Type Immobilized Microorganisms 被引量:6
18
作者 LIN WANG LI-JING HUANG LUO-JIA YUN FEI TANG JING-HUI ZHAO YAN-QUN LIU XIN ZENG QI-FANG LUO 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2008年第2期150-156,共7页
Objective To study the possibility of removing nitrogen, phosphorus, and organic pollutants using seeding type immobilized microorganisms. Methods Lakes P and M in Wuhan were chosen as the objects to study the removal... Objective To study the possibility of removing nitrogen, phosphorus, and organic pollutants using seeding type immobilized microorganisms. Methods Lakes P and M in Wuhan were chosen as the objects to study the removal of nitrogen, phosphorus, and organic pollutants with the seeding type immobilized microorganisms. Correlations between the quantity of heterotrophic bacteria and the total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC) in the two lakes were studied. The dominant bacteria were detected, inoculated to the sludge and acclimated by increasing nitrogen, phosphorus and decreasing carbon source in an intermittent, time-controlled and fixed-quantity way. The bacteria were then used to prepare the seeding type immobilized microorganisms, selecting diatomite as the adsorbent cartier. The ability and influence factors of removing nitrogen, phosphorus, and organic pollutant from water samples by the seeding type immobilized microorganisms were studied. Results The coefficients of the heterotrophic bacterial quantity correlated with TOC, TP, and TN were 0.9143, 0.8229, 0.7954 in Lake P and 0.9168, 0.7187, 0.6022 in Lake M. Ten strains of dominant heterotrophic bacteria belonging to Pseudomonas, Coccus, Aeromonas, Bacillus, and Enterobateriaceae, separately, were isolated. The appropriate conditions for the seeding type immobilized microorgansims in purifying the water sample were exposure time=24 h, pH=7.0-8.0, and quantity of the immobilized microorganisms=0.75-1g/50 mL. The removal rates of TOC, TP, and TN under the above conditions were 80.2%, 81.6%, and 86.8%, respectively. Conclusion The amount of heterotrophic bacteria in the two lakes was correlated with TOC, TP, and TN. These bacteria could be acclimatized and prepared for the immobilized microorganisms which could effectively remove nitrogen, phosphorus, and mixed organic pollutants in the water sample. 展开更多
关键词 Heterotrophic bacteria ACCLIMATION Immobilized microorganisms nitrogen phosphorus Mixed organic pollutants
下载PDF
EFFECT OF NITROGEN AND PHOSPHORUS ON THE GROWTH OF A RED TIDE DINOFLAGELLATE SCRIPPSIELLA TROCHOIDEA (STEIN) LOEBLICH III 被引量:5
19
作者 秦晓明 钱培元 邹景忠 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 1999年第3期212-218,共7页
Scrippsiella trochoidea (Stein) Loeblich III was grown in a nitrogen or phosphorus limited batch culture system in laboratory. Growth rates and cellular Chl a were measured as functions of nitrate and phosphate concen... Scrippsiella trochoidea (Stein) Loeblich III was grown in a nitrogen or phosphorus limited batch culture system in laboratory. Growth rates and cellular Chl a were measured as functions of nitrate and phosphate concentrations. Growth rates were hyperbolic with both nitrate and phosphate concentration and fit the Monod equation. The minimum cell quota of nitrogen and phosphorus and then the optimum N:P ratio of S. trochoidea were estimated in this study. Measurement of phosphate concentration in Jiaozhou Bay suggest that phosphorus is the limiting factor of S. trochoidea growth. 展开更多
关键词 SCRIPPSIELLA trochoidea nitrogen LIMITATION phosphorus LIMITATION GROWTH rate cellular CHL a red tide
下载PDF
On-Farm Assessment of Biosolids Effects on Nitrogen and Phosphorus Accumulation in Soils 被引量:4
20
作者 LI Qiong LI Ju-mei +2 位作者 CUI Xi-long WEI Dong-pu MAYi-bing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第9期1545-1554,共10页
A field plot experiment in a calcareous soil with wheat and maize rotation was carried out for 2 yr. The study aimed to investigate the effects of biosolids (sewage sludge or chicken manure) application on nitrogen ... A field plot experiment in a calcareous soil with wheat and maize rotation was carried out for 2 yr. The study aimed to investigate the effects of biosolids (sewage sludge or chicken manure) application on nitrogen (N) and phosphorus (P) accumulation in soils and to develop a model for the effects of biosolids application on available P (Olsen-P) accumulation in soils, by which the quantities of biosolids that can be safely applied to agricultural soils were estimated. The results showed that heavy application of biosolids to agricultural soils based on the N requirement of a wheat-maize rotation cropping system will oversupply P. Soil total N was increased by 0.010 g kg-1 at application rate of 1 ton sewage sludge per hectare. The high ratio of N to P in grains of wheat and maize (from 4.0 to 7.6) and low ratio of N to P in biosolids (〈2) led to more surplus P accumulated in soils. Although plant yields and P uptake by plants increased with increasing quantities of applied biosolids in soils, there was still an average 2.87 mg kg-1 increase in Olsen-P in the plough layer treated with biosolids for every 100 kg P ha-1 surplus. A predictive model was developed based upon the initial Olsen-P in soils, P input rates, crop yield, soil pH, and cultivation time. From the model, it is suggested that sewage sludge could be applied to calcareous soils for 12 yr using the recommended application rate (9 tons ha-1 yr-1). The field results will be helpful in achieving best management of biosolids application for agricultural production and environmental protection. 展开更多
关键词 BIOSOLIDS soil nitrogen phosphorus
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部