Recent studies have shown interest in flame retardants containing phosphorus, nitrogen and sulfur a combination small molecule with a promising new approach in preparing an important class of flame retardant materials...Recent studies have shown interest in flame retardants containing phosphorus, nitrogen and sulfur a combination small molecule with a promising new approach in preparing an important class of flame retardant materials. Tetraethyl piperazine-1,4-diyldiphosphonate (TEPP) and O,O,O’,O’- tetramethyl piperazine-1,4-diyldiphosphonothioate (TMPT), based on Piperazine derivatives, were prepared successfully and their structures were proved by means of 1H, 13C and 31P NMR. Cotton twill fabric was treated with both compounds to provide different add-on levels. Thermogravimetric Analysis (TGA), microscale combustion calorimeter (MCC), vertical and 45° flame test and limiting oxygen index (LOI) were performed on the treated cotton fabrics and showed promising results. When the treated twill fabrics (5 wt% - 7 wt% add-ons) were tested using the vertical flammability test (ASTMD6413-11), we observed that the ignited fabrics self extinguished and left behind a streak of char. Limiting oxygen index (LOI, ASTM 2863-09) was utilized to determine the effectiveness of the flame retardant on the treated fabrics. LOI values increased from 18 vol% oxygen in nitrogen for untreated twill fabric to a maximum of 30 vol% for the highest add-on of twill. Furthermore, Scanning Electron Microscope (SEM), Attenuated Total Reflection-Infrared (ATR-IR), and Thermogravimetric Analysis-Fourier Transform Infrared (TGA-FTIR) spectroscopy were employed to characterize the chemical structure on the treated fabrics, as well as, the surface morphology of char areas of treated and untreated fabrics. Additionally, analysis of the release gas products by TGA-FTIR shows some distinctive detail in the degradation of the treated fabrics during the burning process.展开更多
A nitrogen phosphorus synergistic flame retardant DCMA was synthesized frOm N-methylol acrylamide (NMA) and Diethyl Chlorophosphate (DC). The reaction time and reaction mechanism were determined by tracking the re...A nitrogen phosphorus synergistic flame retardant DCMA was synthesized frOm N-methylol acrylamide (NMA) and Diethyl Chlorophosphate (DC). The reaction time and reaction mechanism were determined by tracking the reaction process using ultraviolet spectrum.The cotton cloth finished with DCMA, by rolling baking process, when the flame retardant concentration from 10% to 30%.the smoldering time decreased from 3S to 1 S, carbon length decreased from 10.5 to 6.3, limiting oxygen index by 31 increased to 36.4.the tensile breaking strength of cotton fabric decreased from 6.46MPa to 3.12MPa.展开更多
文摘Recent studies have shown interest in flame retardants containing phosphorus, nitrogen and sulfur a combination small molecule with a promising new approach in preparing an important class of flame retardant materials. Tetraethyl piperazine-1,4-diyldiphosphonate (TEPP) and O,O,O’,O’- tetramethyl piperazine-1,4-diyldiphosphonothioate (TMPT), based on Piperazine derivatives, were prepared successfully and their structures were proved by means of 1H, 13C and 31P NMR. Cotton twill fabric was treated with both compounds to provide different add-on levels. Thermogravimetric Analysis (TGA), microscale combustion calorimeter (MCC), vertical and 45° flame test and limiting oxygen index (LOI) were performed on the treated cotton fabrics and showed promising results. When the treated twill fabrics (5 wt% - 7 wt% add-ons) were tested using the vertical flammability test (ASTMD6413-11), we observed that the ignited fabrics self extinguished and left behind a streak of char. Limiting oxygen index (LOI, ASTM 2863-09) was utilized to determine the effectiveness of the flame retardant on the treated fabrics. LOI values increased from 18 vol% oxygen in nitrogen for untreated twill fabric to a maximum of 30 vol% for the highest add-on of twill. Furthermore, Scanning Electron Microscope (SEM), Attenuated Total Reflection-Infrared (ATR-IR), and Thermogravimetric Analysis-Fourier Transform Infrared (TGA-FTIR) spectroscopy were employed to characterize the chemical structure on the treated fabrics, as well as, the surface morphology of char areas of treated and untreated fabrics. Additionally, analysis of the release gas products by TGA-FTIR shows some distinctive detail in the degradation of the treated fabrics during the burning process.
文摘A nitrogen phosphorus synergistic flame retardant DCMA was synthesized frOm N-methylol acrylamide (NMA) and Diethyl Chlorophosphate (DC). The reaction time and reaction mechanism were determined by tracking the reaction process using ultraviolet spectrum.The cotton cloth finished with DCMA, by rolling baking process, when the flame retardant concentration from 10% to 30%.the smoldering time decreased from 3S to 1 S, carbon length decreased from 10.5 to 6.3, limiting oxygen index by 31 increased to 36.4.the tensile breaking strength of cotton fabric decreased from 6.46MPa to 3.12MPa.