The inherent difficulty in preservation and processing of conventional red phosphorus flame retardant severely limits its growing applications in polymer materials,thus,there is an urgent need to exploit effective tec...The inherent difficulty in preservation and processing of conventional red phosphorus flame retardant severely limits its growing applications in polymer materials,thus,there is an urgent need to exploit effective technology to modify red phosphorus.Functionalized lignin-based compounds can provide a great potential in improving the preservation and processing of red phosphorus.Here,we prepared melamine modified lignin/aluminum phosphate coated red phosphorus(LMAP@RP)and used it as the flame retardant of acrylonitrile-butadiene-styrene(ABS)resin.With 25wt%loading LMAP@RP,the ABS samples show excellent flame inhibiting capacity and reached UL-94 V-0 rating.Cone calorimetry test results show that the peak heat release rate,total heat release and total smoke release of ABS/25LMAP@RP are reduced strikingly by 64.6%,49.3%,and 30.1%,respectively.The char residue is 15.36wt%and the char layer is continuous and dense.The outstanding flame retardant and smoke-suppressant performances of LMAP@RP show its application prospect for ABS.展开更多
UV curable hyperbranched prepolymers based on amine-ester, ester-amide and ether-amide started with AB_2-type monomers have been prepared by the authors. A series of work on allyl ether maleate hyperbranched polyester...UV curable hyperbranched prepolymers based on amine-ester, ester-amide and ether-amide started with AB_2-type monomers have been prepared by the authors. A series of work on allyl ether maleate hyperbranched polyesters for UV curing coatings by Hult and his colleagues has been reported. However, the UV cured films from those materials are all flammable when attached to fire without addition of flame retardants.展开更多
An aliphatic epoxy monomer"polypropyleneglycol-diglycidylether(PPGDGE,YF878)"is loaded in the epoxy resins(EP)to evaluate the influence of epoxy structure on the blowing-out effect,which is caused by 9,10-dihydr...An aliphatic epoxy monomer"polypropyleneglycol-diglycidylether(PPGDGE,YF878)"is loaded in the epoxy resins(EP)to evaluate the influence of epoxy structure on the blowing-out effect,which is caused by 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide(DOPO)and octaphenyl silsesquioxane(OPS).The flame retarding properties of these EP composites were tested using the LOI and UL-94 procedures.The pyrolytic gases produced and the thermal stability of the EP composites with different flame retardants were detected by TGA-FTIR in air.The negative effect of YF878 was detected from the TTI,HRR,and p-HRR results after the cone calorimeter test.The char produced by the EP composites after the cone calorimeter test was investigated by FTIR.It is proposed that the aliphatic chain of the YF878 is easy to break down and produce combustible gases,so it does not easily form a crosslinked structure in the condensed phase.These results are very helpful for investigation of the conditions under which the blowing-out effect in epoxy resins can be caused by synergy of phosphorous and silicon.展开更多
A nitrogen phosphorus synergistic flame retardant DCMA was synthesized frOm N-methylol acrylamide (NMA) and Diethyl Chlorophosphate (DC). The reaction time and reaction mechanism were determined by tracking the re...A nitrogen phosphorus synergistic flame retardant DCMA was synthesized frOm N-methylol acrylamide (NMA) and Diethyl Chlorophosphate (DC). The reaction time and reaction mechanism were determined by tracking the reaction process using ultraviolet spectrum.The cotton cloth finished with DCMA, by rolling baking process, when the flame retardant concentration from 10% to 30%.the smoldering time decreased from 3S to 1 S, carbon length decreased from 10.5 to 6.3, limiting oxygen index by 31 increased to 36.4.the tensile breaking strength of cotton fabric decreased from 6.46MPa to 3.12MPa.展开更多
Nanoparticles can provide flame retardance to hosting polymers and act as nano fire extinguishers. Hydroxyapatite (Ca5(OH)(PO4)3) (HA) is not hygroscopic, and is thermally stable up to 800℃, with 18.5 wt% pho...Nanoparticles can provide flame retardance to hosting polymers and act as nano fire extinguishers. Hydroxyapatite (Ca5(OH)(PO4)3) (HA) is not hygroscopic, and is thermally stable up to 800℃, with 18.5 wt% phosphorous content. It is this high phosphorous content that can provide HA with flame retardant properties. In this paper, we report on the continuous synthesis of ultrafine HA using a hydrothermal synthesis technique. The HA surface properties were changed from hydrophilic to hydrophobic by post-synthesis surface modification. The ratio of the HA nanoparticles and an intumescent agent known as Exolit AP750 was investigated to yield a self-extinguishing multi-component epoxy nanocomposite for extended application under extreme fire conditions. The HA/AP750/epoxy nanocomposite was able to resist a flame at 1700 oc and self-extinguish after the flame had been removed. The nanocomposite showed an enhanced flammability performance in standard cone calorimetry testing and formed a compact and cohesive protective char layer with a 50% decrease in peak heat released compared with virgin epoxy. Our aim was to establish the use of HA as an effective nanofiller with phosphorous-based flame retardant properties. The surface of this nano fire extinguisher was modified effectively with different surfactants for enhanced compatibility with different polymeric matrices.展开更多
基金Funded by the National Natural Science Foundation of China(No.51503041)the Natural Science Foundation of Fujian Province,China(No.2018J01752)。
文摘The inherent difficulty in preservation and processing of conventional red phosphorus flame retardant severely limits its growing applications in polymer materials,thus,there is an urgent need to exploit effective technology to modify red phosphorus.Functionalized lignin-based compounds can provide a great potential in improving the preservation and processing of red phosphorus.Here,we prepared melamine modified lignin/aluminum phosphate coated red phosphorus(LMAP@RP)and used it as the flame retardant of acrylonitrile-butadiene-styrene(ABS)resin.With 25wt%loading LMAP@RP,the ABS samples show excellent flame inhibiting capacity and reached UL-94 V-0 rating.Cone calorimetry test results show that the peak heat release rate,total heat release and total smoke release of ABS/25LMAP@RP are reduced strikingly by 64.6%,49.3%,and 30.1%,respectively.The char residue is 15.36wt%and the char layer is continuous and dense.The outstanding flame retardant and smoke-suppressant performances of LMAP@RP show its application prospect for ABS.
基金Supported by the National Natural Science Foundation of China(No. 20074034).
文摘UV curable hyperbranched prepolymers based on amine-ester, ester-amide and ether-amide started with AB_2-type monomers have been prepared by the authors. A series of work on allyl ether maleate hyperbranched polyesters for UV curing coatings by Hult and his colleagues has been reported. However, the UV cured films from those materials are all flammable when attached to fire without addition of flame retardants.
基金Supported by the National Natural Science Foundation of China(51273023)China Postdoctoral Science Foundation(2014M550023)
文摘An aliphatic epoxy monomer"polypropyleneglycol-diglycidylether(PPGDGE,YF878)"is loaded in the epoxy resins(EP)to evaluate the influence of epoxy structure on the blowing-out effect,which is caused by 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide(DOPO)and octaphenyl silsesquioxane(OPS).The flame retarding properties of these EP composites were tested using the LOI and UL-94 procedures.The pyrolytic gases produced and the thermal stability of the EP composites with different flame retardants were detected by TGA-FTIR in air.The negative effect of YF878 was detected from the TTI,HRR,and p-HRR results after the cone calorimeter test.The char produced by the EP composites after the cone calorimeter test was investigated by FTIR.It is proposed that the aliphatic chain of the YF878 is easy to break down and produce combustible gases,so it does not easily form a crosslinked structure in the condensed phase.These results are very helpful for investigation of the conditions under which the blowing-out effect in epoxy resins can be caused by synergy of phosphorous and silicon.
文摘A nitrogen phosphorus synergistic flame retardant DCMA was synthesized frOm N-methylol acrylamide (NMA) and Diethyl Chlorophosphate (DC). The reaction time and reaction mechanism were determined by tracking the reaction process using ultraviolet spectrum.The cotton cloth finished with DCMA, by rolling baking process, when the flame retardant concentration from 10% to 30%.the smoldering time decreased from 3S to 1 S, carbon length decreased from 10.5 to 6.3, limiting oxygen index by 31 increased to 36.4.the tensile breaking strength of cotton fabric decreased from 6.46MPa to 3.12MPa.
基金Financial support of the research project entitled "Enhanced Flame Retardant Polymer Nanocomposites" has been provided by the Egyptian Military Technical College,Cairo,Egypt
文摘Nanoparticles can provide flame retardance to hosting polymers and act as nano fire extinguishers. Hydroxyapatite (Ca5(OH)(PO4)3) (HA) is not hygroscopic, and is thermally stable up to 800℃, with 18.5 wt% phosphorous content. It is this high phosphorous content that can provide HA with flame retardant properties. In this paper, we report on the continuous synthesis of ultrafine HA using a hydrothermal synthesis technique. The HA surface properties were changed from hydrophilic to hydrophobic by post-synthesis surface modification. The ratio of the HA nanoparticles and an intumescent agent known as Exolit AP750 was investigated to yield a self-extinguishing multi-component epoxy nanocomposite for extended application under extreme fire conditions. The HA/AP750/epoxy nanocomposite was able to resist a flame at 1700 oc and self-extinguish after the flame had been removed. The nanocomposite showed an enhanced flammability performance in standard cone calorimetry testing and formed a compact and cohesive protective char layer with a 50% decrease in peak heat released compared with virgin epoxy. Our aim was to establish the use of HA as an effective nanofiller with phosphorous-based flame retardant properties. The surface of this nano fire extinguisher was modified effectively with different surfactants for enhanced compatibility with different polymeric matrices.