Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the ba...Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the bacterial community modifications are poorly understood. Here, six soybean(Glycine max) genotypes with differences in P efficiency were cultivated in acidic soils with long-term sufficient or deficient P-fertilizer treatments. The acid phosphatase(AcP) activities, organic-P concentrations and associated bacterial community compositions were determined in bulk and rhizosphere soils. The results showed that both soybean plant P content and the soil AcP activity were negatively correlated with soil organic-P concentration in P-deficient acidic soils. Soil P-availability affected the ɑ-diversity of bacteria in both bulk and rhizosphere soils. However, soybean had a stronger effect on the bacterial community composition, as reflected by the similar biomarker bacteria in the rhizosphere soils in both P-treatments. The relative abundance of biomarker bacteria Proteobacteria was strongly correlated with soil organic-P concentration and AcP activity in low-P treatments. Further high-throughput sequencing of the phoC gene revealed an obvious shift in Proteobacteria groups between bulk soils and rhizosphere soils, which was emphasized by the higher relative abundances of Cupriavidus and Klebsiella, and lower relative abundance of Xanthomonas in rhizosphere soils. Among them, Cupriavidus was the dominant phoC bacterial genus, and it was negatively correlated with the soil organic-P concentration. These findings suggest that soybean growth relies on organic-P mineralization in P-deficient acidic soils, which might be partially achieved by recruiting specific phoCharboring bacteria, such as Cupriavidus.展开更多
Slime-forming bacteria were isolated from soils, rock surface and earthworm intestine, and their effects on dissolving silicate minerals and tomato growth were examined. One of the bacteria, Bacillus mucilaginosus RGB...Slime-forming bacteria were isolated from soils, rock surface and earthworm intestine, and their effects on dissolving silicate minerals and tomato growth were examined. One of the bacteria, Bacillus mucilaginosus RGBc13, had particularly strong ability to form slime and dissolve silicates. RGBc13 could also colonize and develop in both non-rhizosphere and rhizosphere soil. Total number of slime-forming bacteria increased from 2.9 × 103 cfu·g-1and 8.4 × 103 cfu·g-1 to 9.6 × 106 cfu·g-1 and 6.0 × 107 cfu·g-1 in the non-rhizosphere and rhizosphere soils respectively. Potassium and phosphorus nutritional conditions in the rhizosphere were markedly improved through inoculation of this bacterium. Available K and P respectively increased from 25. 86 and 3. 63mg · kg-1 in the non-rhizosphere soil to 91. 23 and 5. 74mg · kg-1 in the rhizosphere soil. Tomato biomass increased by 125%, K and P uptakes were more than 150%, greater than the non-inoculation. Thus, there is a potential in applying RGBcl3 for improving plant K and P nutrition.展开更多
The potassium-releasing characteristics of a bacterium from different minerals were studied through pure culture and soil column experiments. The results showed that the strain NBT of tested strains had the highest po...The potassium-releasing characteristics of a bacterium from different minerals were studied through pure culture and soil column experiments. The results showed that the strain NBT of tested strains had the highest potassium-releasing capacity. It released 35.2 mg/L after 7days of pure culture incubation at 28@, 31.8% - 1203.7% more than other tested strains. Potassium released from the minerals was obviously affected by pH, aerobic condition, soil and mineral properties. The strain NBT had a much higher potential to release potassium in the pH 6.5-8.0 than other pHs. Living cell inoculation resulted in an increase of 84.8% -127.9% compared with that of the dead cell inoculation. More aerobic condition produced more K than a less aerobic one. The potassium-releasing order was as follows: illite>feldspar>muscovite. Soil column experiment showed that the bacterial number increased from (2.6 - 3.0) × 106/g to (6.8 - 7.4) × 107/g. Soil available potassium content increased by 31.2 - 33.6mg/kg in yellow-brown soil and 21.7mg/kg in paddy soil, when inoculated with the strain NBT, 290.6% and 185.5% increment of the dead cell inoculation soils respectively.展开更多
Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,cau...Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,causing secondary pollution of the river water.In this study,laboratory simulation experiments were conducted initially to investigate the release of nitrogen and phosphorus from river sediments in Urumqi City and the surrounding areas in Xinjiang Uygur Autonomous Region of China and determine the factors that influence their release.The results of this study showed significant short-term differences in nitrogen and phosphorus release characteristics from sediments at different sampling points.The proposed secondary kinetics model(i.e.,pseudo-second-order kinetics model)better fitted the release process of sediment nitrogen and phosphorus.The release of nitrogen and phosphorus from sediments is a complex process driven by multiple factors,therefore,we tested the influence of three factors(pH,temperature,and disturbance intensity)on the release of nitrogen and phosphorus from sediments in this study.The most amount of nitrate nitrogen(NO_(3)^(–)-N)was released under neutral conditions,while the most significant release of ammonia nitrogen(NH_(4)^(+)-N)occurred under acidic and alkaline conditions.The release of nitrite nitrogen(NO_(2)^(-)-N)was less affected by pH.The dissolved total phosphorus(DTP)released significantly in the alkaline water environment,while the release of dissolved organic phosphorus(DOP)was more significant in acidic water.The release amount of soluble reactive phosphorus(SRP)increased with an increase in pH.The sediments released nitrogen and phosphorus at higher temperatures,particularly NH_(4)^(+)-N,NO_(3)^(–)-N,and SRP.The highest amount of DOP was released at 15.0℃.An increase in disturbance intensity exacerbated the release of nitrogen and phosphorus from sediments.NH_(4)^(+)-N,DTP,and SRP levels increased linearly with the intensity of disturbance,while NO_(3)^(–)-N and NO_(2)^(–)-N were more stable.This study provides valuable information for protecting and restoring the water environment in arid areas and has significant practical reference value.展开更多
To evaluate the effects of long-term applications of phosphorus fertilizers on mobility of dissolved organic matter (DOM) and heavy metals in agricultural soils, a sandy soil and a loamy soil were spiked with ammoni...To evaluate the effects of long-term applications of phosphorus fertilizers on mobility of dissolved organic matter (DOM) and heavy metals in agricultural soils, a sandy soil and a loamy soil were spiked with ammonium phosphate at application rates of 0, 25, 50, 100, 250, and 500 mg P per kilogram of soil. A series of 15-cm long soil columns were constructed by packing incubated soils of varying concentrations of P. The soil columns were consecutively leached by simulated rainfalls for six cycles. The contents of water extractable organic carbon in both sandy and loamy soils increased significantly with increasing rates of P applications. Relatively high rates of P applications could induce a marked increase in DOM concentrations in the leachates, the effects were larger with the sandy soil rather than with the loamy soil. Applications of P changed the partitioning of trace metals in the soil solids and the soil solutions. The increased P application rates also seemed to elevate the leaching of Cu, Cd, and Zn from soils. The concentrations of Cu, Cd, and Zn in the leachates were positively correlated with DOM, probably due to the formation of metal-DOM complexes. In contrast, Pb concentrations in the leachates were negatively correlated with DOM, and decreased with increasing rates of P applications. The boosted leaching of DOM induced by high rates of P applications was probably due to the added phosphate ions competing for adsorption sites in the soil solids with the indigenous DOM.展开更多
To investigate the characteristics and metabolic mechanism of short-cut denitrifying phospho- rus-removing bacteria (SDPB) that are capable of enhanced biological phosphorus removal (EBPR) using nitrite as an elec...To investigate the characteristics and metabolic mechanism of short-cut denitrifying phospho- rus-removing bacteria (SDPB) that are capable of enhanced biological phosphorus removal (EBPR) using nitrite as an electron acceptor, an aerobic/anoxic sequencing batch reactor was operated under three phases. An SDPB-strain YC was screened after the sludge enrichment and was identified by morphological, physiological, biochemical properties and 16S rDNA gene sequence analysis. Denitrifying phosphorus-removing experiments were conducted to study anaerobic and anoxic metabolic mechanisms by analyzing the changes of chemical oxygen demand (COD), phosphate, nitrite, poly-fl-hydroxybutyrate (PHB), and glycogen. The results show that strain YC is a non-fermentative SDPB similar to Paracoccus denitrificans. As a kind of non-fermentative bacteria, the energy of strain YC was mainly generated from phosphorus release (96.2%) under anaerobic conditions with 0.32 mg P per mg synthesized PHB. Under anoxic conditions, strain YC accumulated 0.45 mg P per mg degraded PHB, which produced most of energy for phosphate accumulation (91.3%) and a little for glycogen synthesis (8.7%). This metabolic mechanism of strain YC is different from that of traditional phosphorus-accumulating organisms (PAOs). It is also found that PHB, a kind of intracellular polymer, plays a very important role in denitrifying and accumulating phosphorus by supplying sufficient energy for phosphorous accumulation and carbon sources for denitrification. Therefore, monitoring AP/APHB and ANO2 -N/APHB is more necessary than monitoring AP/ACOD, ANO2 -N/ACOD, or AP / ANO2 -N.展开更多
Coal is the vital resource of energy in China,but abandoned coal ash and gangue lead to the degradation of vegetation cover and reduce soil quality.Both arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing ba...Coal is the vital resource of energy in China,but abandoned coal ash and gangue lead to the degradation of vegetation cover and reduce soil quality.Both arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing bacteria (PSB) play a key role in biogeochemical cycle such as soil organic matter decomposition,nutrition release,and energy flow.To improve and reclamation the soil quality and ecological efficiency of the coal mining waste,we investigated the effects of an AMF strain (Glomus mosseae) and a PSB strain (Pantoesstewarti) on phytate mineralization and subsequent transfer to the host plant (Medicago sativa L.) using a two-compartment microcosm with a central 30 mm nylon mesh barrier.The results showed that significantly higher available P (AP),above ground biomass (AGB) and underground biomass (UGB) were in combined inoculation of AMF-PSB than other treatments in root and hyphae compartment.The microbial inoculum of the AMF or PSB had a significant influence on soil acid phosphatase activities (ACP).AMF-PSB enhanced phytate mineralization,improved plant biomass.AP and ACP positively influenced the AGB and UGB.AMF-PSB could be used as bioinoculant to enhance sustainable production of the plant in abandoned solid waste of coal mine.展开更多
An ecosystem-based water quality model was designed to estimate the biochemical reaction of nutrient and dissolved oxygen in conjunction with a three-dimensional hydrodynamic and sediment model. As both phosphorus and...An ecosystem-based water quality model was designed to estimate the biochemical reaction of nutrient and dissolved oxygen in conjunction with a three-dimensional hydrodynamic and sediment model. As both phosphorus and nitrogen successively limit phytoplankton growth in many estuaries, the model simulates both there nutrient cycles each using five variables, namely, dissolved inorganic nutri- ent, detritic organic matter, benthic matter, phytoplankton and zooplankton.展开更多
Alkaline phosphatase activity (APA) and dissolved phosphorus were monitored during the batch cultures of two bone microalgae. Results indicate that variation of APA was in the shape of 'S' curve. Different spe...Alkaline phosphatase activity (APA) and dissolved phosphorus were monitored during the batch cultures of two bone microalgae. Results indicate that variation of APA was in the shape of 'S' curve. Different specs of dissolved phaphorus had different effects on APA. The concentrations of dis solved inorganic phosphorus (DIP) and and molecular dissolved organic phosphorus (SDOP) had a sig nificant effect on APA, while the concentration of large molecular dissolved organic phosphorus (LDOP) had a little effect on APA., and the increase of APA could accelerate the decomposing of LDOP in the medium. Results also show that algae species and abundance had why a little effect on APA.展开更多
Three parallel anaerobic-anoxic/anaerobic-aerobic (AN/AO) processes were developed to enrich denitrifying phosphorus removal bacteria (DPB) for low strength wastewater treatment. The main body of the parallel AN/A...Three parallel anaerobic-anoxic/anaerobic-aerobic (AN/AO) processes were developed to enrich denitrifying phosphorus removal bacteria (DPB) for low strength wastewater treatment. The main body of the parallel AN/AO process consists of an AN (anaerobic-anoxic) process and an AO (anaerobic-aerobic) process. In the AO process, the common phosphorus accumulating organisms (PAOs) was dominate, while in the AN process, DPB was dominate, The volume of anaerobic zone(Vana):anoxie zone(Vano) : aerobic zone (Vaer) for the parallel AN/AO process is 1:1:1 in contrast with a Vana:Vaer and Vano:Vaer of 1:2 and 1:4 for a traditional biological nutrient removal process (BNR). Process 3 excels in the 3 processes on the basis of COD, TN and TP removal. For 4 month operation, the effluent COD concentration of process 3 did not exceed 60 mg/L; the effluent TN concentration of process 3 was lower than 15 mg/L; and the effluent TP concentration of process 3 was lower than 1 mg/L.展开更多
In order to obtain high-efficiency organophosphorus solubilizing bacteria, 21 strains of organophosphate solubilizing bacteria were isolated from the rhizosphere soil of Camellia oleifera plants, and the transparent c...In order to obtain high-efficiency organophosphorus solubilizing bacteria, 21 strains of organophosphate solubilizing bacteria were isolated from the rhizosphere soil of Camellia oleifera plants, and the transparent circle method was used for rescreening. Only 4 strains of bacteria could form transparent circle on organophosphorus medium. The D/d value of 4 strains of bacteria was between 1.62 and 2.71, among which the D/d value of strain Y6 was the highest(2.71). The available phosphorus content of the fermentation supernatant was 8.50~14.79 mg/L, which was 7.88~14.17 mg/L higher than that of CK. The strain Y6 had the highest soluble phosphorus content of 14.79 mg/L in the fermentation supernatant, which was 14.17 mg/L higher than that of CK. According to the colony morphology, physiological and biochemical characteristics and 16S rDNA sequence analysis of strain Y6, it is preliminarily determined that strain Y6 is Pseudomonas. Strain Y6 is beneficial to improve the supply of phosphorus in rhizosphere soil of Camellia oleifera and promote the growth of Camellia oleifera. It has great potential in the development of bio-organic fertilizer.展开更多
A full-scale test was operated by using low dissolved oxygen activated sludge process to enhance biological nitrogen and phosphorus removal. When the influent concentrations of CODCr, TN and TP varied in a range of 35...A full-scale test was operated by using low dissolved oxygen activated sludge process to enhance biological nitrogen and phosphorus removal. When the influent concentrations of CODCr, TN and TP varied in a range of 352.9 mg/L-1338.2 mg/L, 34.4 mg/L-96.3 mg/L, and 2.21 mg/L-24.0 mg/L, the average removal efficiencies were 94.9%, 86.7% and 93.0%, respectively. During the test period of two months, effluent meas of CODCr,, BOD5, NH3-N, TN and TP were below 50 mg/L, 25 mg/L, 10 mg/L and 1.0 mg/L respectively. The low dissolved oxygen activated sludge process has a simple flow sheet, fewer facilities and high N and P removal efficiency. It is very convenient to retrofit the conventional activated sludge process with the above process.展开更多
Several methods for analysis of dissolved total phosphorus in seawater were reviewed. Discussions were focused on UVirradiation and persulphate oxidation methods which are the most popular dissolved organic phosphorus...Several methods for analysis of dissolved total phosphorus in seawater were reviewed. Discussions were focused on UVirradiation and persulphate oxidation methods which are the most popular dissolved organic phosphorus determinationmethods presently. The compounds used for the phosphorus recovery test were categorized into three groups accordingto their chemical structure. It was found that low power UV irradiation can decompose POC or PC bonds efficientlybut may be inefficient for POP bonds. Heating-bath in acid condition is useful for decomposing POP bonds. Usingthe continuous flow analysis system (Auto-analyzer II), UV digestion and heating-bath, series experiments were carriedout based on the above analysis. Eleven model compounds were employed for the phosphorus recovery test and thefactors influencing the decomposition efficiency of dissolved compounds containing phosphorus were clarified. Finally,the optimal design for determination of dissolved total phosphorus in seawater based on the routine continuous flowanalysis system was presented. For the organic mono-phosphate, the recovery is more than 90% and a recovery of33%~51% was obtained for inorganic or organic polyphosphates. Up to now, this is the highest decompositionefficiency for dissolved phosphorus based on the continuous flow analysis system.展开更多
Harnessing the rhizospheric microbiome,including phosphorus mineralizing bacteria(PMB),is a promising technique for maintaining sustainability and productivity in intensive agricultural systems.However,it is unclear a...Harnessing the rhizospheric microbiome,including phosphorus mineralizing bacteria(PMB),is a promising technique for maintaining sustainability and productivity in intensive agricultural systems.However,it is unclear as to which beneficial taxonomic group populations in the rhizosphere are potentially associated with the changes in soil microbiomes shifted by fertilization regimes.Herein,we analyzed the diversity and community structure of total bacteria and PMB in the rhizosphere of maize(Zea mays L.)grown in soils under 25 years of four fertilization regimes(compost,biocompost,chemical,or nonfertilized)via selective culture and Illumina sequencing of the 16S rRNA genes.Plant development explained more variations(29 and 13%,respectively)in the composition of total bacteria and PMB in the rhizosphere of maize than the different fertilization regimes.Among those genera enriched in the rhizosphere of maize,the relative abundances of Oceanobacillus,Bacillus,Achromobacter,Ensifer,Paracoccus,Ramlibacter,and Luteimonas were positively correlated with those in the bulk soil.The relative abundance of Paracoccus was significantly higher in soils fertilized by compost or biocompost than the other soils.Similar results were also observed for PMB affiliated with Ensifer,Bacillus,and Streptomyces.Although plant development was the major factor in shaping the rhizospheric microbiome of maize,fertilization regimes might have modified beneficial rhizospheric microbial taxa such as Bacillus and Ensifer.展开更多
Characteristics of phosphorus removal bacteria were investigated by using three different types of electron acceptors, as well as the positive role of nitrite in phosphorus removal process. An (AO)^2 SBR (anaerobic...Characteristics of phosphorus removal bacteria were investigated by using three different types of electron acceptors, as well as the positive role of nitrite in phosphorus removal process. An (AO)^2 SBR (anaerobic-aerobic-anoxic-aerobic sequencing batch reactor) was thereby employed to enrich denitrifying phosphorus removal bacteria for simultaneously removing phosphorus and nitrogen via auoxic phosphorus uptake, Ammonium oxidation was controlled at the first phase of the nitrification process. Nitrite-inhibition batch tests illustrated that nitrite was not an inhibitor to phosphorus uptake process, but served as an alternative electron acceptor to nitrate and oxygen if the concentration was under the inhibition level of 40mg NO2 - N·L^- 1. It implied that in addition to the two well-accepted groups of phosphorus removal bacterium ( one can only utilize oxygen as electron acceptor, P1, while the other can use both oxygen and nitrate as electron acceptor, P2 ), a new group of phosphorus removal bacterium P3, which could use oxygen, nitrate and nitrite as electron acceptor to take up phosphorus were identified in the test system. To understand (AO)^2 SBR sludge better, the relative population of the different bacteria in this system, plus another A/O SBR sludge ( seed sludge) were respectively estimated by the phosphorus uptake batch tests with either oxygen or nitrate or nitrite as electron acceptor. The results demonstrated that phosphorus removal capability of (AO)^2 SBR sludge had a little degradation after A/O sludge was cultivated in the (AO)^2 mode over a long period of time. However, deuitrifying phosphorus removal bacteria ( P2 and P3 ) was significantly enriched showed by the relative population of the three types of bacteria, which implied that energy for aeration and COD consumption could be reduced in theory.展开更多
The technique of DGT (diffusive gradients in thin films) was applied to obtain high-resolution vertical profiles of dissolved reactive phosphorus (DRP) in sediment porewater of Lake Chaohu, a shallow eutrophication la...The technique of DGT (diffusive gradients in thin films) was applied to obtain high-resolution vertical profiles of dissolved reactive phosphorus (DRP) in sediment porewater of Lake Chaohu, a shallow eutrophication lake. Three kinds of DGT probes (with three thicknesses of diffusive gel: 0.38 mm, 0.78 mm and 1.18 mm) measured vertical concentration and induced flux from solid to solution phase which had intricate variations with depth. The results indicated that higher concentrations and induced fluxes of DRP were achieved by using DGT probe with thicker diffusion layer (CDGT1.18 > CDGT0.78 > CDGT0.38) and relatively stable DRP concentration profiles using DGT probes with 0.78 mm diffusive gel were obtained in each sediment core. The DRP concentrations displayed a clear gradient from Core C1 to Core C3 in sediment porewaters due to different sources and exchange degrees of reactive phosphorus. Compared to the concentrations obtained by the centrifugation technique, the concentrations of DRP resulting from the DGT technique were higher because some dissolved reactive phosphorus compounds have always been neglected using conventional centrifugation method.展开更多
The migration and transformation of phosphorus components in wastewater treatment plants(WWTPs)play a crucial role in the convergence and circulation of phosphorus.However,the composition and variation of dissolved or...The migration and transformation of phosphorus components in wastewater treatment plants(WWTPs)play a crucial role in the convergence and circulation of phosphorus.However,the composition and variation of dissolved organic phosphorus(DOP)in WWTPs were unclear because of its complex nature,hindering its efficient detection.In this study,the DOP species and their transformation during the treatment process in WWTP were comprehensively analyzed.First,two enrichment methods were assessed for their effectiveness at facilitating wastewater analysis:lyophilization and aluminum salt precipitation.Aluminum salt precipitation was found to be better because its application allowed 31P nuclear magnetic resonance(31P NMR)spectroscopy to identify more species in the secondary effluent:orthophosphate(Ortho-P)(81.1%–89.3%of the dissolved total phosphorus),pyrophosphates(Pyro-P)(0%–2.3%),orthophosphate monoesters(Mono-P)(7.0%–10.77%),orthophosphate diesters(Di-P)(1.0%–2.96%),and phosphonate(Phos-P)(1.7%–5.16%).Furthermore,the variation and transformation mechanism of phosphorus,particularly those of DOP,during the entire sewage-treatment process were elucidated.Among the treatment steps,biological treatment combined tertiary treatment achieved better DOP removal efficiencies.Therein,biological treatment mainly removed Mono-P and Di-P with removal efficiencies of 33.3%and 41.7%compared with the effluent of the grit chamber.Di-P has higher bioavailability and is more easily converted and utilized by microorganisms than Mono-P.However,Phos-P,with low bioavailability,was hardly utilized by microorganisms,which showed only 18.4%removal efficiency in biological treatment.In tertiary treatment,coagulation process exhibited higher removal ability of Ortho-P(69.1%)and partial removal efficiencies of DOP,resulting in an increase in the DOP proportion in TP.In addition,Phos-P could not be effectively removed through the biological treatment and was only partially reduced via the adsorption process by large particles,zoogloea or multinuclear hydroxyl complexes.The results of this study can provide a theoretical basis for efficient phosphorus removal in WWTPs.展开更多
基金This work was supported by grants from the National Key Research and Development Program of China(2021YFF1000500)the Open Competition Program of Ten Major Directions of Agricultural Science and Technology Innovation for the 14th Five-Year Plan of Guangdong Province,China(2022SDZG07)+3 种基金the Key Areas Research and Development Programs of Guangdong Province,China(2022B0202060005)the STICGrantof China(SGDX20210823103535007)the Major Program of Guangdong Basic and Applied Research,China(2019B030302006)the Natural Science Foundation of Guangdong Province,China(2021A1515010826and 2020A1515110261).
文摘Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the bacterial community modifications are poorly understood. Here, six soybean(Glycine max) genotypes with differences in P efficiency were cultivated in acidic soils with long-term sufficient or deficient P-fertilizer treatments. The acid phosphatase(AcP) activities, organic-P concentrations and associated bacterial community compositions were determined in bulk and rhizosphere soils. The results showed that both soybean plant P content and the soil AcP activity were negatively correlated with soil organic-P concentration in P-deficient acidic soils. Soil P-availability affected the ɑ-diversity of bacteria in both bulk and rhizosphere soils. However, soybean had a stronger effect on the bacterial community composition, as reflected by the similar biomarker bacteria in the rhizosphere soils in both P-treatments. The relative abundance of biomarker bacteria Proteobacteria was strongly correlated with soil organic-P concentration and AcP activity in low-P treatments. Further high-throughput sequencing of the phoC gene revealed an obvious shift in Proteobacteria groups between bulk soils and rhizosphere soils, which was emphasized by the higher relative abundances of Cupriavidus and Klebsiella, and lower relative abundance of Xanthomonas in rhizosphere soils. Among them, Cupriavidus was the dominant phoC bacterial genus, and it was negatively correlated with the soil organic-P concentration. These findings suggest that soybean growth relies on organic-P mineralization in P-deficient acidic soils, which might be partially achieved by recruiting specific phoCharboring bacteria, such as Cupriavidus.
文摘Slime-forming bacteria were isolated from soils, rock surface and earthworm intestine, and their effects on dissolving silicate minerals and tomato growth were examined. One of the bacteria, Bacillus mucilaginosus RGBc13, had particularly strong ability to form slime and dissolve silicates. RGBc13 could also colonize and develop in both non-rhizosphere and rhizosphere soil. Total number of slime-forming bacteria increased from 2.9 × 103 cfu·g-1and 8.4 × 103 cfu·g-1 to 9.6 × 106 cfu·g-1 and 6.0 × 107 cfu·g-1 in the non-rhizosphere and rhizosphere soils respectively. Potassium and phosphorus nutritional conditions in the rhizosphere were markedly improved through inoculation of this bacterium. Available K and P respectively increased from 25. 86 and 3. 63mg · kg-1 in the non-rhizosphere soil to 91. 23 and 5. 74mg · kg-1 in the rhizosphere soil. Tomato biomass increased by 125%, K and P uptakes were more than 150%, greater than the non-inoculation. Thus, there is a potential in applying RGBcl3 for improving plant K and P nutrition.
文摘The potassium-releasing characteristics of a bacterium from different minerals were studied through pure culture and soil column experiments. The results showed that the strain NBT of tested strains had the highest potassium-releasing capacity. It released 35.2 mg/L after 7days of pure culture incubation at 28@, 31.8% - 1203.7% more than other tested strains. Potassium released from the minerals was obviously affected by pH, aerobic condition, soil and mineral properties. The strain NBT had a much higher potential to release potassium in the pH 6.5-8.0 than other pHs. Living cell inoculation resulted in an increase of 84.8% -127.9% compared with that of the dead cell inoculation. More aerobic condition produced more K than a less aerobic one. The potassium-releasing order was as follows: illite>feldspar>muscovite. Soil column experiment showed that the bacterial number increased from (2.6 - 3.0) × 106/g to (6.8 - 7.4) × 107/g. Soil available potassium content increased by 31.2 - 33.6mg/kg in yellow-brown soil and 21.7mg/kg in paddy soil, when inoculated with the strain NBT, 290.6% and 185.5% increment of the dead cell inoculation soils respectively.
基金the Xinjiang Science and Technology Support Project Plan(2022E02026)the Xinjiang Agricultural University Graduate Research and Innovation Programme(XJAUGRI2023049).
文摘Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,causing secondary pollution of the river water.In this study,laboratory simulation experiments were conducted initially to investigate the release of nitrogen and phosphorus from river sediments in Urumqi City and the surrounding areas in Xinjiang Uygur Autonomous Region of China and determine the factors that influence their release.The results of this study showed significant short-term differences in nitrogen and phosphorus release characteristics from sediments at different sampling points.The proposed secondary kinetics model(i.e.,pseudo-second-order kinetics model)better fitted the release process of sediment nitrogen and phosphorus.The release of nitrogen and phosphorus from sediments is a complex process driven by multiple factors,therefore,we tested the influence of three factors(pH,temperature,and disturbance intensity)on the release of nitrogen and phosphorus from sediments in this study.The most amount of nitrate nitrogen(NO_(3)^(–)-N)was released under neutral conditions,while the most significant release of ammonia nitrogen(NH_(4)^(+)-N)occurred under acidic and alkaline conditions.The release of nitrite nitrogen(NO_(2)^(-)-N)was less affected by pH.The dissolved total phosphorus(DTP)released significantly in the alkaline water environment,while the release of dissolved organic phosphorus(DOP)was more significant in acidic water.The release amount of soluble reactive phosphorus(SRP)increased with an increase in pH.The sediments released nitrogen and phosphorus at higher temperatures,particularly NH_(4)^(+)-N,NO_(3)^(–)-N,and SRP.The highest amount of DOP was released at 15.0℃.An increase in disturbance intensity exacerbated the release of nitrogen and phosphorus from sediments.NH_(4)^(+)-N,DTP,and SRP levels increased linearly with the intensity of disturbance,while NO_(3)^(–)-N and NO_(2)^(–)-N were more stable.This study provides valuable information for protecting and restoring the water environment in arid areas and has significant practical reference value.
基金supported by the Natural Science Foundation of Zhejiang Province,China (No.R306011)the National Basic Research Program (973) of China (No.2005CB121104)the National Natural Science Foundation of China (No.40771090)
文摘To evaluate the effects of long-term applications of phosphorus fertilizers on mobility of dissolved organic matter (DOM) and heavy metals in agricultural soils, a sandy soil and a loamy soil were spiked with ammonium phosphate at application rates of 0, 25, 50, 100, 250, and 500 mg P per kilogram of soil. A series of 15-cm long soil columns were constructed by packing incubated soils of varying concentrations of P. The soil columns were consecutively leached by simulated rainfalls for six cycles. The contents of water extractable organic carbon in both sandy and loamy soils increased significantly with increasing rates of P applications. Relatively high rates of P applications could induce a marked increase in DOM concentrations in the leachates, the effects were larger with the sandy soil rather than with the loamy soil. Applications of P changed the partitioning of trace metals in the soil solids and the soil solutions. The increased P application rates also seemed to elevate the leaching of Cu, Cd, and Zn from soils. The concentrations of Cu, Cd, and Zn in the leachates were positively correlated with DOM, probably due to the formation of metal-DOM complexes. In contrast, Pb concentrations in the leachates were negatively correlated with DOM, and decreased with increasing rates of P applications. The boosted leaching of DOM induced by high rates of P applications was probably due to the added phosphate ions competing for adsorption sites in the soil solids with the indigenous DOM.
基金Supported by the Nafional Natural Science Foundation of China (51078008), the Natural Science Foundation of Guangdong Province (06022869, 07003251), and the National Key Scientific and Technological Project Water Pollution Control and Treatment (2008ZX07211-003, 2009ZX07314-009-003).
文摘To investigate the characteristics and metabolic mechanism of short-cut denitrifying phospho- rus-removing bacteria (SDPB) that are capable of enhanced biological phosphorus removal (EBPR) using nitrite as an electron acceptor, an aerobic/anoxic sequencing batch reactor was operated under three phases. An SDPB-strain YC was screened after the sludge enrichment and was identified by morphological, physiological, biochemical properties and 16S rDNA gene sequence analysis. Denitrifying phosphorus-removing experiments were conducted to study anaerobic and anoxic metabolic mechanisms by analyzing the changes of chemical oxygen demand (COD), phosphate, nitrite, poly-fl-hydroxybutyrate (PHB), and glycogen. The results show that strain YC is a non-fermentative SDPB similar to Paracoccus denitrificans. As a kind of non-fermentative bacteria, the energy of strain YC was mainly generated from phosphorus release (96.2%) under anaerobic conditions with 0.32 mg P per mg synthesized PHB. Under anoxic conditions, strain YC accumulated 0.45 mg P per mg degraded PHB, which produced most of energy for phosphate accumulation (91.3%) and a little for glycogen synthesis (8.7%). This metabolic mechanism of strain YC is different from that of traditional phosphorus-accumulating organisms (PAOs). It is also found that PHB, a kind of intracellular polymer, plays a very important role in denitrifying and accumulating phosphorus by supplying sufficient energy for phosphorous accumulation and carbon sources for denitrification. Therefore, monitoring AP/APHB and ANO2 -N/APHB is more necessary than monitoring AP/ACOD, ANO2 -N/ACOD, or AP / ANO2 -N.
基金We gratefully acknowledge the State Key Research Development Program of China(Grant No.2016YFC0501106)and the National Natural Science Foundation of China(Project 51574253).
文摘Coal is the vital resource of energy in China,but abandoned coal ash and gangue lead to the degradation of vegetation cover and reduce soil quality.Both arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing bacteria (PSB) play a key role in biogeochemical cycle such as soil organic matter decomposition,nutrition release,and energy flow.To improve and reclamation the soil quality and ecological efficiency of the coal mining waste,we investigated the effects of an AMF strain (Glomus mosseae) and a PSB strain (Pantoesstewarti) on phytate mineralization and subsequent transfer to the host plant (Medicago sativa L.) using a two-compartment microcosm with a central 30 mm nylon mesh barrier.The results showed that significantly higher available P (AP),above ground biomass (AGB) and underground biomass (UGB) were in combined inoculation of AMF-PSB than other treatments in root and hyphae compartment.The microbial inoculum of the AMF or PSB had a significant influence on soil acid phosphatase activities (ACP).AMF-PSB enhanced phytate mineralization,improved plant biomass.AP and ACP positively influenced the AGB and UGB.AMF-PSB could be used as bioinoculant to enhance sustainable production of the plant in abandoned solid waste of coal mine.
基金The present study was supported by the Pearl River Estuary Pollution Project funded by the Hong Kong Government/Hong Kong Jock
文摘An ecosystem-based water quality model was designed to estimate the biochemical reaction of nutrient and dissolved oxygen in conjunction with a three-dimensional hydrodynamic and sediment model. As both phosphorus and nitrogen successively limit phytoplankton growth in many estuaries, the model simulates both there nutrient cycles each using five variables, namely, dissolved inorganic nutri- ent, detritic organic matter, benthic matter, phytoplankton and zooplankton.
基金National Natural Science Foundation of China ! 49206063.
文摘Alkaline phosphatase activity (APA) and dissolved phosphorus were monitored during the batch cultures of two bone microalgae. Results indicate that variation of APA was in the shape of 'S' curve. Different specs of dissolved phaphorus had different effects on APA. The concentrations of dis solved inorganic phosphorus (DIP) and and molecular dissolved organic phosphorus (SDOP) had a sig nificant effect on APA, while the concentration of large molecular dissolved organic phosphorus (LDOP) had a little effect on APA., and the increase of APA could accelerate the decomposing of LDOP in the medium. Results also show that algae species and abundance had why a little effect on APA.
基金The Shuguang Program of Shanghai Education Committee (No. 03SG20)
文摘Three parallel anaerobic-anoxic/anaerobic-aerobic (AN/AO) processes were developed to enrich denitrifying phosphorus removal bacteria (DPB) for low strength wastewater treatment. The main body of the parallel AN/AO process consists of an AN (anaerobic-anoxic) process and an AO (anaerobic-aerobic) process. In the AO process, the common phosphorus accumulating organisms (PAOs) was dominate, while in the AN process, DPB was dominate, The volume of anaerobic zone(Vana):anoxie zone(Vano) : aerobic zone (Vaer) for the parallel AN/AO process is 1:1:1 in contrast with a Vana:Vaer and Vano:Vaer of 1:2 and 1:4 for a traditional biological nutrient removal process (BNR). Process 3 excels in the 3 processes on the basis of COD, TN and TP removal. For 4 month operation, the effluent COD concentration of process 3 did not exceed 60 mg/L; the effluent TN concentration of process 3 was lower than 15 mg/L; and the effluent TP concentration of process 3 was lower than 1 mg/L.
基金湖南省科技厅重点研发计划(2017N K 2144)长沙市科技局重大专项(kq1804016)+1 种基金湖南农业科技创新联盟项目(2017LM0305)重金属污染耕地安全高效利用湖南省工程研究中心开放研究基金(TGOP-001)。
文摘In order to obtain high-efficiency organophosphorus solubilizing bacteria, 21 strains of organophosphate solubilizing bacteria were isolated from the rhizosphere soil of Camellia oleifera plants, and the transparent circle method was used for rescreening. Only 4 strains of bacteria could form transparent circle on organophosphorus medium. The D/d value of 4 strains of bacteria was between 1.62 and 2.71, among which the D/d value of strain Y6 was the highest(2.71). The available phosphorus content of the fermentation supernatant was 8.50~14.79 mg/L, which was 7.88~14.17 mg/L higher than that of CK. The strain Y6 had the highest soluble phosphorus content of 14.79 mg/L in the fermentation supernatant, which was 14.17 mg/L higher than that of CK. According to the colony morphology, physiological and biochemical characteristics and 16S rDNA sequence analysis of strain Y6, it is preliminarily determined that strain Y6 is Pseudomonas. Strain Y6 is beneficial to improve the supply of phosphorus in rhizosphere soil of Camellia oleifera and promote the growth of Camellia oleifera. It has great potential in the development of bio-organic fertilizer.
文摘A full-scale test was operated by using low dissolved oxygen activated sludge process to enhance biological nitrogen and phosphorus removal. When the influent concentrations of CODCr, TN and TP varied in a range of 352.9 mg/L-1338.2 mg/L, 34.4 mg/L-96.3 mg/L, and 2.21 mg/L-24.0 mg/L, the average removal efficiencies were 94.9%, 86.7% and 93.0%, respectively. During the test period of two months, effluent meas of CODCr,, BOD5, NH3-N, TN and TP were below 50 mg/L, 25 mg/L, 10 mg/L and 1.0 mg/L respectively. The low dissolved oxygen activated sludge process has a simple flow sheet, fewer facilities and high N and P removal efficiency. It is very convenient to retrofit the conventional activated sludge process with the above process.
基金The research was supported by the National Basic Research Program(“973”Program)of China under contract No.2002CB412405the Key Science and Technology Plan of the Ministry of Education of China under contract No.[2000]156-00079the Joint Sino-German Project under contract No.03F0189A.
文摘Several methods for analysis of dissolved total phosphorus in seawater were reviewed. Discussions were focused on UVirradiation and persulphate oxidation methods which are the most popular dissolved organic phosphorus determinationmethods presently. The compounds used for the phosphorus recovery test were categorized into three groups accordingto their chemical structure. It was found that low power UV irradiation can decompose POC or PC bonds efficientlybut may be inefficient for POP bonds. Heating-bath in acid condition is useful for decomposing POP bonds. Usingthe continuous flow analysis system (Auto-analyzer II), UV digestion and heating-bath, series experiments were carriedout based on the above analysis. Eleven model compounds were employed for the phosphorus recovery test and thefactors influencing the decomposition efficiency of dissolved compounds containing phosphorus were clarified. Finally,the optimal design for determination of dissolved total phosphorus in seawater based on the routine continuous flowanalysis system was presented. For the organic mono-phosphate, the recovery is more than 90% and a recovery of33%~51% was obtained for inorganic or organic polyphosphates. Up to now, this is the highest decompositionefficiency for dissolved phosphorus based on the continuous flow analysis system.
基金supported by the National Key R&D Program of China(2019YFD1002000,2016YFD0800602 and 2016YFD0501404)。
文摘Harnessing the rhizospheric microbiome,including phosphorus mineralizing bacteria(PMB),is a promising technique for maintaining sustainability and productivity in intensive agricultural systems.However,it is unclear as to which beneficial taxonomic group populations in the rhizosphere are potentially associated with the changes in soil microbiomes shifted by fertilization regimes.Herein,we analyzed the diversity and community structure of total bacteria and PMB in the rhizosphere of maize(Zea mays L.)grown in soils under 25 years of four fertilization regimes(compost,biocompost,chemical,or nonfertilized)via selective culture and Illumina sequencing of the 16S rRNA genes.Plant development explained more variations(29 and 13%,respectively)in the composition of total bacteria and PMB in the rhizosphere of maize than the different fertilization regimes.Among those genera enriched in the rhizosphere of maize,the relative abundances of Oceanobacillus,Bacillus,Achromobacter,Ensifer,Paracoccus,Ramlibacter,and Luteimonas were positively correlated with those in the bulk soil.The relative abundance of Paracoccus was significantly higher in soils fertilized by compost or biocompost than the other soils.Similar results were also observed for PMB affiliated with Ensifer,Bacillus,and Streptomyces.Although plant development was the major factor in shaping the rhizospheric microbiome of maize,fertilization regimes might have modified beneficial rhizospheric microbial taxa such as Bacillus and Ensifer.
文摘Characteristics of phosphorus removal bacteria were investigated by using three different types of electron acceptors, as well as the positive role of nitrite in phosphorus removal process. An (AO)^2 SBR (anaerobic-aerobic-anoxic-aerobic sequencing batch reactor) was thereby employed to enrich denitrifying phosphorus removal bacteria for simultaneously removing phosphorus and nitrogen via auoxic phosphorus uptake, Ammonium oxidation was controlled at the first phase of the nitrification process. Nitrite-inhibition batch tests illustrated that nitrite was not an inhibitor to phosphorus uptake process, but served as an alternative electron acceptor to nitrate and oxygen if the concentration was under the inhibition level of 40mg NO2 - N·L^- 1. It implied that in addition to the two well-accepted groups of phosphorus removal bacterium ( one can only utilize oxygen as electron acceptor, P1, while the other can use both oxygen and nitrate as electron acceptor, P2 ), a new group of phosphorus removal bacterium P3, which could use oxygen, nitrate and nitrite as electron acceptor to take up phosphorus were identified in the test system. To understand (AO)^2 SBR sludge better, the relative population of the different bacteria in this system, plus another A/O SBR sludge ( seed sludge) were respectively estimated by the phosphorus uptake batch tests with either oxygen or nitrate or nitrite as electron acceptor. The results demonstrated that phosphorus removal capability of (AO)^2 SBR sludge had a little degradation after A/O sludge was cultivated in the (AO)^2 mode over a long period of time. However, deuitrifying phosphorus removal bacteria ( P2 and P3 ) was significantly enriched showed by the relative population of the three types of bacteria, which implied that energy for aeration and COD consumption could be reduced in theory.
文摘The technique of DGT (diffusive gradients in thin films) was applied to obtain high-resolution vertical profiles of dissolved reactive phosphorus (DRP) in sediment porewater of Lake Chaohu, a shallow eutrophication lake. Three kinds of DGT probes (with three thicknesses of diffusive gel: 0.38 mm, 0.78 mm and 1.18 mm) measured vertical concentration and induced flux from solid to solution phase which had intricate variations with depth. The results indicated that higher concentrations and induced fluxes of DRP were achieved by using DGT probe with thicker diffusion layer (CDGT1.18 > CDGT0.78 > CDGT0.38) and relatively stable DRP concentration profiles using DGT probes with 0.78 mm diffusive gel were obtained in each sediment core. The DRP concentrations displayed a clear gradient from Core C1 to Core C3 in sediment porewaters due to different sources and exchange degrees of reactive phosphorus. Compared to the concentrations obtained by the centrifugation technique, the concentrations of DRP resulting from the DGT technique were higher because some dissolved reactive phosphorus compounds have always been neglected using conventional centrifugation method.
基金support of the Major Science and Technology Program for Water Pollution Control and Treatment(No.2017ZX07106)the China Postdoctoral Science Foundation(No.2022M713469)+1 种基金the China Construction Technology Consulting Co.,Ltd.Youth Fund(No.Z2022Q15)the North China Municipal Engineering Design&Research Institute Co.Ltd.(HJ-2021-53-HJY).
文摘The migration and transformation of phosphorus components in wastewater treatment plants(WWTPs)play a crucial role in the convergence and circulation of phosphorus.However,the composition and variation of dissolved organic phosphorus(DOP)in WWTPs were unclear because of its complex nature,hindering its efficient detection.In this study,the DOP species and their transformation during the treatment process in WWTP were comprehensively analyzed.First,two enrichment methods were assessed for their effectiveness at facilitating wastewater analysis:lyophilization and aluminum salt precipitation.Aluminum salt precipitation was found to be better because its application allowed 31P nuclear magnetic resonance(31P NMR)spectroscopy to identify more species in the secondary effluent:orthophosphate(Ortho-P)(81.1%–89.3%of the dissolved total phosphorus),pyrophosphates(Pyro-P)(0%–2.3%),orthophosphate monoesters(Mono-P)(7.0%–10.77%),orthophosphate diesters(Di-P)(1.0%–2.96%),and phosphonate(Phos-P)(1.7%–5.16%).Furthermore,the variation and transformation mechanism of phosphorus,particularly those of DOP,during the entire sewage-treatment process were elucidated.Among the treatment steps,biological treatment combined tertiary treatment achieved better DOP removal efficiencies.Therein,biological treatment mainly removed Mono-P and Di-P with removal efficiencies of 33.3%and 41.7%compared with the effluent of the grit chamber.Di-P has higher bioavailability and is more easily converted and utilized by microorganisms than Mono-P.However,Phos-P,with low bioavailability,was hardly utilized by microorganisms,which showed only 18.4%removal efficiency in biological treatment.In tertiary treatment,coagulation process exhibited higher removal ability of Ortho-P(69.1%)and partial removal efficiencies of DOP,resulting in an increase in the DOP proportion in TP.In addition,Phos-P could not be effectively removed through the biological treatment and was only partially reduced via the adsorption process by large particles,zoogloea or multinuclear hydroxyl complexes.The results of this study can provide a theoretical basis for efficient phosphorus removal in WWTPs.