期刊文献+
共找到1,021篇文章
< 1 2 52 >
每页显示 20 50 100
A critical review towards the causes of the iron-based catalysts deactivation mechanisms in the selective oxidation of hydrogen sulfide to elemental sulfur from biogas
1
作者 Mostafa Tarek Janaina S.Santos +4 位作者 Victor Márquez Mohammad Fereidooni Mohammad Yazdanpanah Supareak Praserthdam Piyasan Praserthdam 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期388-411,I0010,共25页
Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of ... Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S. 展开更多
关键词 Selective oxidation of H_(2)S iron-based catalysts Mechanism of deactivation Sulfur or sulfate deposition Transformation of iron species Sintering SDG 7
下载PDF
Efficient degradation of dye pollutants in wastewater via photocatalysis using a magnetic zinc oxide/graphene/iron oxide-based catalyst
2
作者 Piyawan Nuengmatcha Arnannit Kuyyogsuy +3 位作者 Paweena Porrawatkul Rungnapa Pimsen Saksit Chanthai Prawit Nuengmatcha 《Water Science and Engineering》 EI CAS CSCD 2023年第3期243-251,共9页
In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visible-light responsive ternary heterostructure and improving overall photosta... In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visible-light responsive ternary heterostructure and improving overall photostability by incorporating magnetic zinc oxide/graphene/iron oxide (ZGF). A solvothermal approach was used to synthesize the catalyst. X-ray diffraction (XRD), scanning electron microscopic, energy dispersive X-ray, transmission electron microscopic, vibrating sample magnetometric, and ultraviolet–visible diffuse reflectance spectroscopic techniques were used to characterize the synthesized samples. The obtained optimal Zn(NO_(3))_(2) concentration, temperature, and heating duration were 0.10 mol/L, 600℃, and 1 h, respectively. The XRD pattern revealed the presence of peaks corresponding to zinc oxide, graphene, and iron oxide, indicating that the ZGF catalyst was effectively synthesized. Furthermore, when the developed ZGF was used for methylene blue dye degradation, the optimum irradiation time, dye concentration, catalyst dosage, irradiation intensity, and solution pH were 90 min, 10 mg/L, 0.03 g/L, 100 W, and 8.0, respectively. Therefore, the synthesized ZGF system could be used as a catalyst to degrade dyes in wastewater samples. This hybrid nanocomposite consisting of zinc oxide, graphene, and iron oxide could also be used as an effective photocatalytic degrader for various dye pollutants. 展开更多
关键词 Magnetic zinc oxide/graphene/iron oxide PHOTOCATALYSIS Dye pollutants catalyst Degradation
下载PDF
Promotion effects of alkali metals on iron molybdate catalysts for CO_(2)catalytic hydrogenation
3
作者 Yong Zhou Aliou Sadia Traore +9 位作者 Deizi V.Peron Alan J.Barrios Sergei A.Chernyak Massimo Corda Olga V.Safonova Achim Iulian Dugulan Ovidiu Ersen Mirella Virginie Vitaly V.Ordomsky Andrei Y.Khodakov 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期291-300,I0009,共11页
CO_(2)hydrogenation is an attractive way to store and utilize carbon dioxide generated by industrial processes,as well as to produce valuable chemicals from renewable and abundant resources.Iron catalysts are commonly... CO_(2)hydrogenation is an attractive way to store and utilize carbon dioxide generated by industrial processes,as well as to produce valuable chemicals from renewable and abundant resources.Iron catalysts are commonly used for the hydrogenation of carbon oxides to hydrocarbons.Iron-molybdenum catalysts have found numerous applications in catalysis,but have been never evaluated in the CO_(2)hydrogenation.In this work,the structural properties of iron-molybdenum catalysts without and with a promoting alkali metal(Li,Na,K,Rb,or Cs)were characterized using X-ray diffraction,hydrogen temperatureprogrammed reduction,CO_(2)temperature-programmed desorption,in-situ^(57)Fe Mossbauer spectroscopy and operando X-ray adsorption spectroscopy.Their catalytic performance was evaluated in the CO_(2)hydrogenation.During the reaction conditions,the catalysts undergo the formation of an iron(Ⅱ)molybdate structure,accompanied by a partial reduction of molybdenum and carbidization of iron.The rate of CO_(2)conversion and product selectivity strongly depend on the promoting alkali metals,and electronegativity was identified as an important factor affecting the catalytic performance.Higher CO_(2)conversion rates were observed with the promoters having higher electronegativity,while low electronegativity of alkali metals favors higher light olefin selectivity. 展开更多
关键词 CO_(2)utilization iron molybdate catalysts PROMOTION Alkali metals Light olefins In-situ characterization
下载PDF
Iron-based Fischer–Tropsch synthesis of lower olefins: The nature of χ-Fe_5C_2 catalyst and why and how to introduce promoters 被引量:9
4
作者 Di Wang Bingxu Chen +2 位作者 Xuezhi Duan De Chen Xinggui Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期911-916,共6页
As a sustainable and short-flow process, iron-catalyzed direct conversion of CO-rich syngas to lower olefins without intermediate steps, i.e., Fischer–Tropsch-to-Olefins (FTO), has received increasing attention. Howe... As a sustainable and short-flow process, iron-catalyzed direct conversion of CO-rich syngas to lower olefins without intermediate steps, i.e., Fischer–Tropsch-to-Olefins (FTO), has received increasing attention. However, its fundamental understanding is usually limited by the complex crystal phase composition in addition to the interferences of the promoter effects and inevitable catalyst deactivation. Until recently, the combination of multiple in-situ/ex-situ characterizations and theoretical studies has evidenced Hägg iron carbide (χ-Fe5C2) as the dominant active phase of iron-based Fischer–Tropsch catalysts. This perspective attempts to review and discuss some recent progresses on the nature of χ-Fe5C2catalyst and the crucial effects of promoters on the FTO performance from theoretical and experimental viewpoints, aiming to provide new insights into the rational design of iron-based FTO catalysts. © 2016 Science Press 展开更多
关键词 Carbides catalyst deactivation catalysts iron OLEFINS Phase composition
下载PDF
A novel fused iron catalyst for ammonia synthesis promoted with rare earth gangue 被引量:5
5
作者 俞秀金 林炳裕 +2 位作者 林建新 王榕 魏可镁 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第5期711-716,共6页
Rare earth gangue, which mainly consists of mixtures of light rare earths such as lanthana, ceria, neodymium oxide and praseodymium oxide, was used as the promoter of fused iron catalysts for ammonia synthesis. The re... Rare earth gangue, which mainly consists of mixtures of light rare earths such as lanthana, ceria, neodymium oxide and praseodymium oxide, was used as the promoter of fused iron catalysts for ammonia synthesis. The result showed that the activity of the catalyst promoted with rare earth gangue was comparable with those of commercial iron catalysts with high amount of cobalt. The role of rare earths was owed to their advantages for favoring the deep reduction of the main composite in catalyst, i.e., iron oxide. This fmding indicated that the use of rare earth gangue could decrease the content of cobalt or even completely replace cobalt, which was used to be regarded as unsub- stitutable promoters for high performance ammonia catalyst; therefore, the cost of fused iron catalysts would decrease significantly. 展开更多
关键词 rare earth gangue PROMOTER fused iron catalyst ammonia synthesis
下载PDF
Selective oxidation of methane to formaldehyde by oxygen over silica-supported iron catalysts 被引量:4
6
作者 Jieli He Yang Li Dongli An Qinghong Zhang Ye Wang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第3期288-294,共7页
FeOx-SiO2 catalysts prepared by a sol-gel method were studied for the selective oxidation of methane by oxygen. A single-pass formaldehyde yield of 2.0% was obtained over the FeOx-SiO2 with an iron content of 0.5 wt% ... FeOx-SiO2 catalysts prepared by a sol-gel method were studied for the selective oxidation of methane by oxygen. A single-pass formaldehyde yield of 2.0% was obtained over the FeOx-SiO2 with an iron content of 0.5 wt% at 898 K. This 0.5 wt% FeOx-SiO2 catalyst demonstrated significantly higher catalytic performances than the 0.5 wt% FeOx/SiO2 prepared by an impregnation method. The correlation between the catalytic performances and the characterizations with UV-Vis and H2-TPR suggested that the higher dispersion of iron species in the catalyst prepared by the sol-gel method was responsible for its higher catalytic activity for formaldehyde formation. The modification of the FeOx-SiO2 by phosphorus enhanced the formaldehyde selectivity, and a single-pass formaldehyde yield of 2.4% could be attained over a P-FeOx-SiO2 catalyst (P/Fe = 0.5) at 898 K. Raman spectroscopic measurements indicated the formation of FePO4 nanoclusters in this catalyst, which were more selective toward formaldehyde formation. 展开更多
关键词 selective oxidation METHANE FORMALDEHYDE iron catalyst sol-gel method
下载PDF
Effects of Catalyst and Additive Containing Li, Na, or Ca on Reduction of Iron Oxide/Carbon Composite Pellets 被引量:6
7
作者 Xingmin Guo, Shengbi Zhang, Nianxin Fu, Xiaofeng Zhao Metallurgy School, University of Science and Technology Beijing, Beijing 100083, China Northeastern University, Shenyang 110006, China Anshan Iron and Steel (Group) Company, Anshan 114021, China 《Journal of University of Science and Technology Beijing》 CSCD 2001年第3期185-188,共4页
The catalyst containing 0.69% (mass fraction) of Li+, Na+, or Ca2+ were synthesized, and the catalytic effect on the reduction of iron oxide/carbon composite pellets were investigated by comparing with that of additiv... The catalyst containing 0.69% (mass fraction) of Li+, Na+, or Ca2+ were synthesized, and the catalytic effect on the reduction of iron oxide/carbon composite pellets were investigated by comparing with that of additive at 850 degreesC. The effect of the catalyst was greater than that of the additive, it can be considered that catalyst promoted the formation of iron nucleus early on reduction processes of iron oxide/carbon composite pellets. In addition, both effects of catalyst and additive increased after added carbon powder into the pellets, but the extent of increase decreased when the carbon powder exceeded a suitable content (about 4%), this amount is less than that of carbon needed theoretically on the reduction from hematite to iron. 展开更多
关键词 iron oxide carbon REDUCTION catalyst PELLETS ADDITIVE
下载PDF
Effects of the Different Supports on the Activity and Selectivity of Iron-Cobalt Bimetallic Catalyst for Fischer-Tropsch Synthesis 被引量:3
8
作者 Xiangdong Ma Qiwen Sun +2 位作者 Fahai Cao Weiyong Ying Dingye Fang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第4期335-339,共5页
Silica, alumina, and activated carbon supported iron-cobalt catalysts were prepared by incipient wetness impregnation. These catalysts have been characterized by BET, X-ray diffraction (XRD), and temperature-program... Silica, alumina, and activated carbon supported iron-cobalt catalysts were prepared by incipient wetness impregnation. These catalysts have been characterized by BET, X-ray diffraction (XRD), and temperature-programmed reduction (TPR). Activity and selectivity of iron-cobalt supported on different carriers for CO hydrogenation were studied under the conditions of 1.5 MPa, 493 K, 630 h^-1, and H2/CO ratio of 1.6. The results indicate that the activity, C4 olefin/(C4 olefin+C4 paraffin) ratio, and C5 olefin/(C5 olefin+C5 paraffin) decrease in the order of Fe-Co/SiO2, Fe-Co/AC1, Fe-Co/Al2O3 and Fe- Co/AC2. The activity of Fe-Co/SiO2 reached a maximum. The results of TPR show that the Fe-Co/SiO2 catalyst is to some extent different. XRD patterns show that the Fe-Co/SiO2 catalyst differs significantly from the others; it has two diffraction peaks. The active spinel phase is correlated with the supports. 展开更多
关键词 Fischer-Tropsch synthesis bimetallic catalyst iron COBALT support silica ALUMINA active carbon SYNGAS
下载PDF
Systematic variation of the sodium/sulfur promoter content on carbon-supported iron catalysts for the Fischer–Tropsch to olefins reaction 被引量:3
9
作者 Martin Oschatz Nynke Krans +1 位作者 Jingxiu Xie Krijn P.de Jong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期985-993,共9页
The Fischer–Tropsch to olefins(FTO) process is a method for the direct conversion of synthesis gas to lower C–Colefins. Carbon-supported iron carbide nanoparticles are attractive catalysts for this reaction.The ca... The Fischer–Tropsch to olefins(FTO) process is a method for the direct conversion of synthesis gas to lower C–Colefins. Carbon-supported iron carbide nanoparticles are attractive catalysts for this reaction.The catalytic activity can be improved and undesired formation of alkanes can be suppressed by the addition of sodium and sulfur as promoters but the influence of their content and ratio remains poorly understood and the promoted catalysts often suffer from rapid deactivation due to particle growth. A series of carbon black-supported iron catalysts with similar iron content and nominal sodium/sulfur loadings of 1–30/0.5–5 wt% with respect to iron are prepared and characterized under FTO conditions at 1and 10 bar syngas pressure to illuminate the influence of the promoter level on the catalytic properties.Iron particles and promoters undergo significant reorganization during FTO operation under industrially relevant conditions. Low sodium content(1–3 wt%) leads to a delay in iron carbide formation. Sodium contents of 15–30 wt% lead to rapid loss of catalytic activity due to the covering of the iron surface with promoters during particle growth under FTO operation. Higher activity and slower loss of activity are observed at low promoter contents(1–3 wt% sodium and 0.5–1 wt% sulfur) but a minimum amount of alkali is required to effectively suppress methane and C–Cparaffin formation. A reference catalyst support(carbide-derived carbon aerogel) shows that the optimum promoter level depends on iron particle size and support pore structure. 展开更多
关键词 Fischer–Tropsch to olefins synthesis C2–C4 olefins iron catalysts Promoters Carbon supports
下载PDF
Preparation of Nano-Sized γ-Al_2O_3 Supported Iron Catalyst for Fischer-Tropsch Synthesis by Solvated Metal Atom Impregnation Methods 被引量:2
10
作者 Lihua Yu Xiaoxiang Zhang Zongjie Du Da Wang Shurong Wang Shihua Wu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第1期46-52,共7页
Two types of small iron clusters supported on γ-Al2O3-RT(dehydroxylated at room temperature) and γ-Al2O3-800 (dehydroxylated at 800 ℃) were prepared by solvated metal atom impregnation (SMAI) techniques. The ... Two types of small iron clusters supported on γ-Al2O3-RT(dehydroxylated at room temperature) and γ-Al2O3-800 (dehydroxylated at 800 ℃) were prepared by solvated metal atom impregnation (SMAI) techniques. The iron atom precursor complex, bis(toluene)iron(0) formed in the metal atom reactor, was impregnated into γ-Al2O3 having different concentrations of surface hydroxyl groups to study the effect of surface hydroxylation on the crucial stage of iron cluster formation. Catalysts prepared in this way were characterized by TEM, Mǒssbauer, and chemisorption measurements, and the results show that higher concentration of surface hydroxyl groups of γ-Al2O3-RT favors the formation of more positively charged supported iron cluster Fen/γ-Al2O3-RT, and the lower concentration of surface hydroxyl groups of γ-Al2O3-800 favors the formation of basically neutral supported iron cluster Fen/γ-Al2O3-800. The measured results also indicate that the higher concentration of surface hydroxyl groups causes the rapid decomposition of precursor complex, bis(toluene)iron(0), and favors the formation of relatively large iron cluster. Consequently, these two types of catalysts show different catalytic properties in Fischer-Tropsch reaction. The catalytic pattern of Fen/γ-Al2O3-RT in F-T reaction is similar to that of the unreduced γ-Fe2O3 and that of Fen/γ-Al2O3-800 is similar to that of the reduced α-Fe2O3. 展开更多
关键词 iron clusters solvated metal atom impregnation iron atom precursor complex FischerTropsch synthesis alumina supported catalyst
下载PDF
Controlled Radical Polymerization of Methyl Methacrylate Catalyzed by Hybrid Supported Iron Catalyst 被引量:2
11
作者 LI Zhong-hui, ZHANG Yong-ming XUE Min-zhao ZHOU Lei LIU Yan-gang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2005年第6期737-739,共3页
A supported iron catalyst, which was prepared by anchoring FeCl2/FeCl3 on the cross-linking macroporous polyacrylate ion exchange resin, was evaluated via the controlled radical polymerization. When a small amount of ... A supported iron catalyst, which was prepared by anchoring FeCl2/FeCl3 on the cross-linking macroporous polyacrylate ion exchange resin, was evaluated via the controlled radical polymerization. When a small amount of CuCl2/ Me6TREN was added, the controllability of the polymerization over the iron-mediated catalyst was significantly improved(Mw/Mn = 1.23-1.73 ), affording a polymer with a low residual metal via a simple catalyst separation procedure. After suitable regeneration, the supported iron catalyst could also he recycled. UV-Vis analysis showed that the additional copper catalyst could facilitate the radical deactivation process. 展开更多
关键词 Controlled radical polymerization Supported catalyst iron halide Copper halide
下载PDF
Kinetics of the water-gas shift reaction in Fischer-Tropsch synthesis over a nano-structured iron catalyst 被引量:2
12
作者 Ali Nakhaei Pour Mohammad Reza Housaindokht +1 位作者 Sayyed Faramarz Tayyari Jamshid Zarkesh 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第4期362-368,共7页
Based on formate and direct oxidation mechanisms,three Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetic models of the water-gasshift (WGS) reaction over a nano-structured iron catalyst under Fischer-Tropsch synth... Based on formate and direct oxidation mechanisms,three Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetic models of the water-gasshift (WGS) reaction over a nano-structured iron catalyst under Fischer-Tropsch synthesis (FTS) reaction conditions were derived and compared with those over the conventional catalyst.The conventional and nanostructured Fe/Cu/La/Si catalysts were prepared by co-precipitation of Fe and Cu nitrates in aqueous media and water-oil micro-emulsion,respectively.The WGS kinetic data were measured by experiments over a wide range of reaction conditions and comparisons were also made for various rate equations.WGS rate expressions based on the formate mechanism with the assumption that the formation of formate is rate determining step were found to be the best. 展开更多
关键词 KINETICS water-gas-shift reaction iron catalyst Fischer-Tropsch synthesis
下载PDF
Activation pressure studies with an iron-based catalyst for slurry Fischer-Tropsch synthesis 被引量:2
13
作者 Qinglan Hao Liang Bai +1 位作者 Hongwei Xiang Yongwang Li 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第4期429-435,共7页
Fischer-Tropsch synthesis (FTS) was carried out with an industrial iron-based catalyst (100Fe/5Cu/6K/16SiO2, by weight) under the baseline conditions in a stirred tank slurry reactor (STSR). The effects of activ... Fischer-Tropsch synthesis (FTS) was carried out with an industrial iron-based catalyst (100Fe/5Cu/6K/16SiO2, by weight) under the baseline conditions in a stirred tank slurry reactor (STSR). The effects of activation pressure on the catalyst activity and selectivity were investigated. It was found that iron phase compositions, textural properties, and FTS performances of the catalysts were strongly dependent on activation pressure. The high activation pressure retards the carburization. MФssbauer effect spectroscopy (MES) results indicated that the contents of the iron carbides clearly decrease with the increase of activation pressure, especially for the activation pressure increasing from 1.0 MPa to 1.5 MPa, and the reverse trend is observed for superparamagnetic Fe^3+ (spm). The higher content of Fe^3+ (spm) results in the higher amount of CO2 in tail gas when the catalyst is reduced at higher pressure. The catalyst activity decreases with the increase of activation pressure. The high quantity of iron carbides is necessary to obtain high FTS activity. However, the activity of the catalyst activated in syngas can not be predicted solely from the fraction of the carbides. It is concluded that activation with syngas at the lower pressure would be the most desirable for the better activity and stability on the iron-based catalyst. 展开更多
关键词 wFischer-Tropsch synthesis spray-dried iron catalyst activation pressure slurry reactor MCssbauer effect spectroscopy
下载PDF
Reduction of Sulphur-containing Aromatic Nitro Compounds with Hydrazine Hydrate over Iron(III) Oxide-MgO Catalyst 被引量:2
14
作者 Qi Xun SHI Rong Wen LU Zhu Xia ZHANG De Feng ZHAO 《Chinese Chemical Letters》 SCIE CAS CSCD 2006年第4期441-443,共3页
Sulphur-containing aromatic amines were prepared efficiently in good to excellent yields by reduction of the corresponding sulphur-containing aromatic nitro compounds with hydrazine hydrate in the presence of iron(Ⅲ... Sulphur-containing aromatic amines were prepared efficiently in good to excellent yields by reduction of the corresponding sulphur-containing aromatic nitro compounds with hydrazine hydrate in the presence of iron(Ⅲ) oxide-MgO catalyst. The catalyst exhibited high activity and stability for the reduction of sulphur-containing aromatic nitro compounds. The yields of sulphur-containing aromatic amines were up to 91-99 % at 355 K after reduction for 1-4 h over this catalyst. 展开更多
关键词 iron(Ⅲ) oxide-MgO catalyst hydrazine hydrate sulphur-containing aromatic nitro compounds reduction.
下载PDF
Preparation of Sulphur-containing Aromatic Amines by Reduction of the Corresponding Aromatic Nitro Compounds with Hydrazine Hydrate over Iron Oxide Hydroxide Catalyst 被引量:1
15
作者 Qi Xun SHI Rong Wen LU Zhu Xia ZHANG De Feng ZHAO 《Chinese Chemical Letters》 SCIE CAS CSCD 2006年第8期1045-1047,共3页
关键词 iron oxide hydroxide catalyst hydrazine hydrate sulphur-containing aromatic nitro compounds reduction.
下载PDF
Fabrication of K-promoted iron/carbon nanotubes composite catalysts for the Fischer–Tropsch synthesis of lower olefins 被引量:4
16
作者 Xuezhi Duan Di Wang +4 位作者 Gang Qian John C.Walmsley Anders Holmen De Chen Xinggui Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第2期309-315,共7页
K-promoted iron/carbon nanotubes composite(i.e., Fe K-OX) was prepared by a redox reaction between carbon nanotubes and K2FeO4followed by thermal treatments on a purpose as the Fischer–Tropsch catalyst for the dire... K-promoted iron/carbon nanotubes composite(i.e., Fe K-OX) was prepared by a redox reaction between carbon nanotubes and K2FeO4followed by thermal treatments on a purpose as the Fischer–Tropsch catalyst for the direct conversion of syngas to lower olefins. Its catalytic behaviors were compared with those of the other two Fe-IM and Fe K-IM catalysts prepared by impregnation method followed by thermal treatments. The novel Fe K-OX composite catalyst is found to exhibit higher hydrocarbon selectivity,lower olefins selectivity and chain growth probability as well as better stability. The catalyst structureperformance relationship has been established using multiple techniques including XRD, Raman, TEM and EDS elemental mapping. In addition, effects of additional potassium into the Fe K-OX composite catalyst on the FTO performance were also investigated and discussed. Additional potassium promoters further endow the catalysts with higher yield of lower olefins. These results demonstrated that the introduction method of promoters and iron species plays a crucial role in the design and fabrication of highly active,selective and stable iron-based composite catalysts for the FTO reaction. 展开更多
关键词 Fischer–Tropsch synthesis Lower olefins iron catalyst Potassium promoter Carbon nanotubes
下载PDF
Effect of manganese on the catalytic performance of an iron-manganese bimetallic catalyst for light olefin synthesis 被引量:15
17
作者 Tingzhen Li Hulin Wang +2 位作者 Yong Yang Hongwei Xiang Yongwang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第4期624-632,共9页
A systematic study was carried out to investigate the promotion effect of manganese on the performance of a coprecipitated iron-manganese bimetallic catalyst for the light olefins synthesis from syngas. The catalyst s... A systematic study was carried out to investigate the promotion effect of manganese on the performance of a coprecipitated iron-manganese bimetallic catalyst for the light olefins synthesis from syngas. The catalyst samples were characterized by N2 physisorption, transmis- sion electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), Mossbauer spectroscopy, H2- differential thermogravimetric analysis (H2-DTG), CO temperature-programmed reduction (CO-TPR) and CO2 temperature-programmed des- orption (CO2-TPD). The Fischer-Tropsch synthesis (FTS) performance of the catalyst was measured at 1.5 MPa, 250 ℃ and syngas with H2/CO ratio of 2.0. The characterization results indicated that the addition of manganese decreases the catalyst crystallite size, and improves the catalyst BET surface area and pore volume. The presence of manganese suppresses the catalyst reduction and carburization in H2, CO and syngas, respectively. The addition of manganese improves the catalytic activity of water-gas shift reaction and suppresses the oxidation of iron carbides in the FTS reaction. The incorporation of manganese improves the catalyst surface basicity and results in a significant improvement in the selectivities to light olefins and heavy hydrocarbons (C5+), and furthermore an inhibition of methane formation in FTS. The pure iron catalyst (Mn-00) has the highest initial FTS catalytic activity (65%) and the lowest selectivity (17.35 wt%) to light olefins (C2=-C4=). The addition of an appropriate amount of manganese can improve the catalyst FTS activity. 展开更多
关键词 light olefin Fischer-Tropsch synthesis iron-manganese bimetallic catalyst CARBURIZATION
下载PDF
Effects of Reaction Conditions on Performance of Ru Catalyst and Iron Catalyst for Ammonia Synthesis 被引量:2
18
作者 潘崇根 李瑛 +1 位作者 蒋文 刘化章 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第2期273-277,共5页
激活的支持碳的基于 Ru 的催化剂和 A301 铁催化剂被准备,并且铁催化剂的性能上的反应温度,空间速度,压力,和 H2/N2 比率的影响在系列结合了 Ru 催化剂因为氨合成被调查。活动测试也作为比较在单个 Ru 和 Fe 催化剂上被执行。结果... 激活的支持碳的基于 Ru 的催化剂和 A301 铁催化剂被准备,并且铁催化剂的性能上的反应温度,空间速度,压力,和 H2/N2 比率的影响在系列结合了 Ru 催化剂因为氨合成被调查。活动测试也作为比较在单个 Ru 和 Fe 催化剂上被执行。结果证明为氨合成的 Ru 催化剂的活动比由在反应条件下面的 33.5%37.6% 展开更多
关键词 氨合成催化剂 负载钌催化剂 铁催化剂 反应条件 性能比 H2/N2 催化剂制备 钌基催化剂
下载PDF
Study of Manganese Promoter on a Precipitated Iron-Based Catalyst for Fischer-Tropsch Synthesis 被引量:10
19
作者 Zhichao Tao Yong fang +4 位作者 Chenghua Zhang Tingzhen Li Mingyue Ding Hongwei Xiang Yongwang Li 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第3期278-285,共8页
The effects of Manganese (Mn) incorporation on a precipitated iron-based Fischer-Tropsch synthesis (FTS) catalyst were investigated using N2 physical adsorption, air differential thermal analysis (DTA), H2 tempe... The effects of Manganese (Mn) incorporation on a precipitated iron-based Fischer-Tropsch synthesis (FTS) catalyst were investigated using N2 physical adsorption, air differential thermal analysis (DTA), H2 temperature-programmed reduction (TPR), and Mǒssbauer spectroscopy. The FTS performances of the catalysts were tested in a slurry phase reactor. The characterization results indicated that Mn increased the surface area of the catalyst, and improved the dispersion of (α-Fe2O3 and reduced its crystallite size as a result of the high dispersion effect of Mn and the Fe-Mn interaction. The Fe-Mn interaction also suppressed the reduction of (α-Fe2O3 to Fe3O4, stabilized the FeO phase, and (or) decreased the carburization degree of the catalysts in the H2 and syngas reduction processes. In addition, incorporated Mn decreased the initial catalyst activity, but improved the catalyst stability because Mn restrained the reoxidation of iron carbides to Fe3O4, and improved further carburization of the catalysts. Manganese suppressed the formation of CH4 and increased the selectivity to light olefins (C2-4^=), but it had little effect on the selectivities to heavy (C5+) hydrocarbons. All these results indicated that the strong Fe-Mn interaction suppressed the chemisorptive effect of the Mn as an electronic promoter, to some extent, in the precipitated iron-manganese catalyst system. 展开更多
关键词 Fischer-Tropsch synthesis iron-manganese catalyst manganese promoter Fe-Mn interaction
下载PDF
Study on iron-manganese catalysts for Fischer-Tropsch synthesis 被引量:5
20
作者 MOSTAFA FEYZI FATANEH JAFARI 《燃料化学学报》 EI CAS CSCD 北大核心 2012年第5期550-557,共8页
铁锰催化剂被一起沉淀方法准备。催化剂的描述被使用 X 光衍射(XRD ) 执行,扫描电子显微镜学(SEM ) ,温度程序减小(TPR ) , N2 吸附解吸附作用大小。从 Fischer-Tropsch 合成的催化表演测试的结果证明铁锰催化剂对催化剂作文和材料... 铁锰催化剂被一起沉淀方法准备。催化剂的描述被使用 X 光衍射(XRD ) 执行,扫描电子显微镜学(SEM ) ,温度程序减小(TPR ) , N2 吸附解吸附作用大小。从 Fischer-Tropsch 合成的催化表演测试的结果证明铁锰催化剂对催化剂作文和材料来源敏感过度。当 CH4 和 CO2 由使用从铁(II ) 准备的铁锰催化剂减少了时, C24 轻石蜡增加了,这被发现当 CH4 和 CO2 由使用从铁(II ) 准备的铁锰催化剂减少了时硫酸盐(催化剂) 。催化剂的活动和选择处于不同运作的条件被学习。结果证明为 C24 轻石蜡生产的最好的运作的条件在 260 点是 H2/CO=1/1 (GHSV=2400 h1 ) 展开更多
关键词 iron-manganese catalyst catalytic performance operational conditions Fischer-Tropsch synthesis
下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部