Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg3Al1-xFex,containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the selective ...Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg3Al1-xFex,containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the selective hydrogenation of cinnamaldehyde(CAL).When x was changed from 0(Ir/Mg3Al)to 1(Ir/Mg3Fe),the rate of CAL hydrogenation reached a maximum at approximately x=0.25,while the selectivity to unsaturated alcohol,i.e.,cinnamyl alcohol,monotonously increased from 44.9%to 80.3%.Meanwhile,the size of the supported Ir particles did not change significantly with x,remaining at 1.7-0.2 nm,as determined by transmission electron microscopy.The chemical state of Ir and Fe species in the Ir/Mg3Al1-xFex catalysts was examined by temperature programmed reduction by H2 and X‐ray photoelectron spectroscopy.The surface of the supported Ir particles was also examined through the in‐situ diffuse reflectance infrared Fourier‐transform of a probe molecule of CO.On the basis of these characterization results,the effects of Fe doping to Mg3Al on the structural and catalytic properties of Ir particles in selective CAL hydrogenation were discussed.The significant factors are the electron transfer from Fe2+in the Mg3Al1–xFex support to the dispersed Ir particles and the surface geometry.展开更多
Monolithic catalysts for CO_(2) methanation have become an active research area for the industrial development of Power-to-Gas technology.In this study,we developed a facile and reproducible synthesis strategy for the...Monolithic catalysts for CO_(2) methanation have become an active research area for the industrial development of Power-to-Gas technology.In this study,we developed a facile and reproducible synthesis strategy for the preparation of structured NiFe catalysts on washcoated cordierite monoliths for CO_(2) methanation.The NiFe catalysts were derived from in-situ grown layered double hydroxides(LDHs)via urea hydrolysis.The influence of different washcoat materials,i.e.,alumina and silica colloidal suspensions on the formation of LDHs layer was investigated,together with the impact of total metal concentration.NiFe LDHs were precipitated on the exterior surface of cordierite washcoated with alumina,while it was found to deposit further inside the channel wall of monolith washcoated with silica due to different intrinsic properties of the colloidal solutions.On the other hand,the thickness of in-situ grown LDHs layers and the catalyst loading could be increased by high metal concentration.The best monolithic catalyst(COR-AluCC-0.5M)was robust,having a thin and well-adhered catalytic layer on the cordierite substrate.As a result,high methane yield was obtained from CO_(2) methanation at high flow rate on this structured NiFe catalysts.The monolithic catalysts appeared as promising structured catalysts for the development of industrial methanation reactor.展开更多
The colloid of delaminated layered double hydroxides(LDHs), a new LDH-based catalyst, is described. The semi-heterogeneous delaminated colloidal MgPdA1-LDH, in which the total surface of catalytic site-bearing lamella...The colloid of delaminated layered double hydroxides(LDHs), a new LDH-based catalyst, is described. The semi-heterogeneous delaminated colloidal MgPdA1-LDH, in which the total surface of catalytic site-bearing lamellae was rendered accessible for chemical reactivity, showed excellent catalysis toward Suzuki reaction. The turnover frequency of this catalyst for Suzuki reaction between bromobenzene and phenylboronic acid is about 8000 h^-1.展开更多
Layered double hydroxides(LDHs)have attracted tremendous research interest in widely spreading applications.Most notably,transition-metal-bearing LDHs are expected to serve as highly active electrocatalysts for oxygen...Layered double hydroxides(LDHs)have attracted tremendous research interest in widely spreading applications.Most notably,transition-metal-bearing LDHs are expected to serve as highly active electrocatalysts for oxygen evolution reaction(OER)due to their layered structure combined with versatile com-positions.Furthermore,reducing the thickness of platelet LDH crystals to nanometer or even molecular scale via cleavage or delamination provides an important clue to enhance the activity.In this review,recent progresses on rational design of LDH nanosheets are reviewed,including direct synthesis via traditional coprecipitation,homogeneous precipitation,and newly developed topochemical oxidation as well as chemical exfoliation of parent LDH crystals.In addition,diverse strategies are introduced to modulate their electrochemical activity by tuning the composition of host metal cations and intercalated counter-anions,and incorporating dopants,cavi-ties,and single atoms.In particular,hybridizing LDHs with conductive components or in situ growing them on conductive substrates to produce freestanding electrodes can further enhance their intrinsic catalytic activity.A brief discussion on future research directions and prospects is also summarized.展开更多
The hierarchical structure of molybdenum disulfide(MoS2)nanosheet arrays stemmed from nickelcobalt layered double hydroxide(NiCo-LDH)/carbon cloth was prepared by growing the MoS_(2) nanosheet arrays onto the NiCo-LDH...The hierarchical structure of molybdenum disulfide(MoS2)nanosheet arrays stemmed from nickelcobalt layered double hydroxide(NiCo-LDH)/carbon cloth was prepared by growing the MoS_(2) nanosheet arrays onto the NiCo-LDH template which was pre-deposited onto the carbon cloth substrate.In this electrode configuration,carbon cloth is the three dimensional and conductive skeleton;NiCo-LDH nanosheets,as the template,ensure the oriented growth of MoS2 nanosheet arrays.Therefore,more MoS_(2) active sites are exposed and the catalyst exhibits good hydrogen evolution reaction activity.展开更多
An effect of Mg introduction on efficiency of high-loaded nickel catalysts in dehydrogenation of decahydroquinoline(10HQ)was inves-tigated.10HQ dehydrogenation is key process for the liquid organic hydrogen carrier(LO...An effect of Mg introduction on efficiency of high-loaded nickel catalysts in dehydrogenation of decahydroquinoline(10HQ)was inves-tigated.10HQ dehydrogenation is key process for the liquid organic hydrogen carrier(LOHC)storage technology using the quinoline/10HQ pair as H_(2)-lean/H_(2)-rich substrates.An influence of synthesis technique of Ni/Mg/Al catalysts on their properties has been demonstrated.The catalysts were synthesized through coprecipitation of Ni,Mg,Al precursors to obtain layered double hydroxides(LDH)or via syn-thesis of(∼72 wt%)Ni-Al_(2)O_(3) system-also through coprecipitation,followed by modifying with a magnesium-containing precursor.For the catalysts of the first series,the inclusion of magnesium into LDH lattice led to a significant increase in catalytic activity in hydrogen extraction(10HQ dehydrogenation reaction).Despite the decrease in the content of catalytically active nickel,a significant increase in the yield of the dehydrogenation product was observed.This regularity is presumably associated with appearance of basic sites,that accelerates the dehydrogenation reaction.In the case of the second series,activity of pre-reduced(600°C,H_(2))catalysts in dehydrogenation of 10HQ also significantly depends on a MgO content and is maximal at Mg:Ni weight ratio 0.056.Using an in-depth study of structure of the original and reduced catalyst samples(Ni-Al_(2)O_(3) and Ni-MgNiOx-Al_(2)O_(3)),it was shown that this regularity is associated with the increased resistance of catalytically active Ni particles to agglomeration during the reductive activation.Also,using the Ni-MgNiOx-Al_(2)O_(3)catalyst for hydrogen storage process(hydrogenation reaction),the possibility of deep quinoline hydrogenation(up to 10HQ)in a flow-type reactor was demonstrated for the first time.展开更多
The hydrogenation of petroleum resin(PR)is an effective process to prepare high value-added hydrogenated PR(HPR).However,the preparation of non-noble metal-based catalysts with high catalytic activity for PR hydrogena...The hydrogenation of petroleum resin(PR)is an effective process to prepare high value-added hydrogenated PR(HPR).However,the preparation of non-noble metal-based catalysts with high catalytic activity for PR hydrogenation still remains a challenge.Herein,a La promoted Ni-based catalyst is reported through the thermal reduction of quaternary Ni La Mg Al-layered double hydroxides(Ni La Mg Al-LDHs).The incorporation of La is beneficial to the reduction and stability of Ni particles with reduced particle size,and the increased alkalinity effectively mitigates the breakage of molecular chains of PR.As a result,the La promoted Ni-based catalyst exhibits high catalytic activity and excellent stability for PR hydrogenation.A hydrogenation degree of 95.4%and 96.1%can be achieved for HC_(5)PR and HC_(9) PR with less reduced softening point,respectively.Notably,the hydrogenation degree still maintains at 92.7%even after 100 hours’reaction,much better than that without La incorporation or prepared using conventional impregnation method.展开更多
Seawater splitting is a prospective approach to yield renewable and sustainable hydrogen energy.Complex preparation processes and poor repeatability are currently considered to be an insuperable impediment to the prom...Seawater splitting is a prospective approach to yield renewable and sustainable hydrogen energy.Complex preparation processes and poor repeatability are currently considered to be an insuperable impediment to the promotion of the large-scale production and application of electrocatalysts.Avoiding the use of intricate instruments,corrosion engineering is an intriguing strategy to reduce the cost and presents considerable potential for electrodes with catalytic performance.An anode comprising quinary AlCoCrFeNi layered double hydroxides uniformly decorated on an AlCoCrFeNi high-entropy alloy is proposed in this paper via a one-step corrosion engineering method,which directly serves as a remarkably active catalyst for boosting the oxygen evolution reaction(OER)in alkaline seawater.Notably,the best-performing catalyst exhibited oxygen evolution reaction activity with overpotential values of 272.3 and 332 mV to achieve the current densities of 10 and100 mA·cm^(-2),respectively.The failure mechanism of the obtained catalyst was identified for advancing the development of multicomponent catalysts.展开更多
The characteristic parameters were measured with floating double probe method when cold plasma was interacting with catalysts, such as MoO3/Al2O3, NiY, Pd/Al2O3, which were used in the conversion of natural gas to C2 ...The characteristic parameters were measured with floating double probe method when cold plasma was interacting with catalysts, such as MoO3/Al2O3, NiY, Pd/Al2O3, which were used in the conversion of natural gas to C2 hydrocarbons through electrical field enhanced plasma catalysis. These parameters were compared in different input voltage, different atmosphere, before and after reaction in plasma field. The interaction between catalysts and cold plasma was also investigated. This confirm that cold plasma can enhanced catalysis effect.展开更多
The interactions between the components of FeCl3-Al (i-Bu)3-bipyridine -catalyst were studied by the electric conductivity of these components in a hydrogenated gasoline medium at 25℃. It was found that Al (i-Bu) ex...The interactions between the components of FeCl3-Al (i-Bu)3-bipyridine -catalyst were studied by the electric conductivity of these components in a hydrogenated gasoline medium at 25℃. It was found that Al (i-Bu) existed in an 3 associated state and was then dissociated into ion pairs. The reaction between FeCl3 and Al (i-Bu)3 is the chief reaction in the formation of nano-sized particles. Simultaneously, Al (i-Bu)3 reduced Fe3+ into Fe2+. The reaction between Fe2+ and bipy generated a Fe (bipyridine)2+ complex compound, which prevented Al (i-Bu)3 from reducing Fe2+ to a lower valence (Fe+, Fe0). The excessive Al (i-Bu)3 was dissociated into ion pairs and formed a double layer, which stabilized the nano-sized particles.展开更多
Poly(ethylene terephthalate)(PET)was synthesized by the in-situ polymerization method using layered double hydrotalcite(LDH)as the catalyst,and the thermal and flame retardation properties of PET were investigated as ...Poly(ethylene terephthalate)(PET)was synthesized by the in-situ polymerization method using layered double hydrotalcite(LDH)as the catalyst,and the thermal and flame retardation properties of PET were investigated as required.As identified by differential scanning calorimetry(DSC)and thermogravimetric(TGA)analysis,the crystallization rate and thermal degradation temperature of the as-prepared PET sample were enhanced compared with commercial PET sample.It was confirmed from the fire-resistant property study that the LDH can be used as an efficient flame-retardant besides functioning as a catalyst in the transesterification/polycondensation process for PET synthesis.展开更多
Double perovskite-type catalysts including La2 CoMnO6 and La2 CuMnO6 are first evaluated for the effectiveness in removing volatile organic compounds(VOCs), and single perovskites(La CoO3, LaMnO3, and La Cu O3) ar...Double perovskite-type catalysts including La2 CoMnO6 and La2 CuMnO6 are first evaluated for the effectiveness in removing volatile organic compounds(VOCs), and single perovskites(La CoO3, LaMnO3, and La Cu O3) are also tested for comparison. All perovskites are tested with the gas hourly space velocity(GHSV) of 30,000 hr^-1, and the temperature range of100–600℃ for C7H8 removal. Experimental results indicate that double perovskites have better activity if compared with single perovskites. Especially, toluene(C7H8) can be completely oxidized to CO2 at 300℃ as La2 Co MnO6 is applied. Characterization of catalysts indicates that double perovskites own unique surface properties and are of higher amounts of lattice oxygen,leading to higher activity. Additionally, apparent activation energy of 68 k J/mol is calculated using Mars-van Krevelen model for C7 H8 oxidation with La2 Co Mn O6 as catalyst. For durability test, both La2 Co Mn O6 and La2 CuMnO6 maintain high C7 H8 removal efficiencies of 100% and98%, respectively, at 300℃ and 30,000 hr^-1, and they also show good resistance to CO2(5%) and H2 O(g)(5%) of the gas streams tested. For various VOCs including isopropyl alcohol(C3H8 O),ethanal(C2H4O), and ethylene(C2H4) tested, as high as 100% efficiency could be achieved with double perovskite-type catalysts operated at 300–350℃, indicating that double perovskites are promising catalysts for VOCs removal.展开更多
An atomically dispersed FeCo-NC material with the 3D flower-like morphology was used as a unique substrate for the controllable deposition of ultrasmall NiFe layered double hydroxide nanodots(termed as NiFe-NDs)to sim...An atomically dispersed FeCo-NC material with the 3D flower-like morphology was used as a unique substrate for the controllable deposition of ultrasmall NiFe layered double hydroxide nanodots(termed as NiFe-NDs)to simultaneously promote the sluggish kinetics of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).The size-limiting growth of NiFe-NDs(~4.0 nm in diameter)was realized via the confinement of the 3D flower-like mesoporous structure and the rich N/O functionality of FeCo-NC.Benefiting from the distinctive structure with the simultaneously maximum exposure of both OER and ORR active sites,the NiFe-ND/FeCo-NC composite showed an ORR halfwave potential of 0.85 V and an OER potential of 1.66 V in0.1 mol L-1KOH at 10.0 mA cm-2.In-situ Raman analysis suggested the activity of OER was derived from the Ni sites on NiFe-ND/FeCo-NC.Moreover,the NiFe-ND/FeCo-NC-assembled Zn-air battery(ZAB)exhibited a very small discharge-charge voltage gap of 0.87 V at 20 mA cm-2and robust cycling stability.Furthermore,the NiFe-ND/FeCo-NC composite was also applicable for fabricating all-solid-state ZAB to power wearable electronics with superior cycling stability under deformation.Our work could enlighten a new applicable branch of atomically dispersed metal-nitrogen-carbon materials as unique substrates for fabricating multifunctional electrocatalysts.展开更多
Ammonia synthesis by electrochemical nitrogen reduction technique is an attractive alternative to traditional Haber-Bosch process.Currently,development of an efficient and effective electrocatalyst is one of the remai...Ammonia synthesis by electrochemical nitrogen reduction technique is an attractive alternative to traditional Haber-Bosch process.Currently,development of an efficient and effective electrocatalyst is one of the remaining key challenges.In this work,density functional theory(DFT)computations were systematically employed on double transition metal atoms(Fe,Co,Ni,Cu and Mo)anchored Graphdiyne(GDY)for nitrogen reduction reaction(NRR).The Co-Ni heteronuclear complex and Mo-Mo homonuclear complex showed the highest NRR activity while demonstrating synergistic effect of double atomic catalytic sites towards the promising NRR activity.展开更多
Photothermal CO_(2) reduction is an efficient and sustainable catalytic path for CO_(2) treatment.Here,we successfully fabricated a novel series of Ni-based catalysts(Ni-x)via H2 reduction of NiAl-layered double hydro...Photothermal CO_(2) reduction is an efficient and sustainable catalytic path for CO_(2) treatment.Here,we successfully fabricated a novel series of Ni-based catalysts(Ni-x)via H2 reduction of NiAl-layered double hydroxide nanosheets at temperatures(x)ranging from 300 to 600°C.With the increase of the reduction temperature,the methane generation rate of the Ni-x catalyst for photothermal CO_(2) hydrogenation gradually increased under ultraviolet-visible-infrared(UV-vis-IR)irradiation in a flow-type system.The Ni-600 catalyst showed a CO_(2) conversion of 78.4%,offering a CH4 production rate of 278.8 mmol·g^(−1)h−1,with near 100%selectivity and 100 h long-term stability.Detailed characterization analyses showed metallic Ni nanoparticles supported on amorphous alumina are the catalytically active phase for CO_(2) methanation.This study provides a possibility for large-scale conversion and utilization of CO_(2) from a sustainable perspective.展开更多
文摘Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg3Al1-xFex,containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the selective hydrogenation of cinnamaldehyde(CAL).When x was changed from 0(Ir/Mg3Al)to 1(Ir/Mg3Fe),the rate of CAL hydrogenation reached a maximum at approximately x=0.25,while the selectivity to unsaturated alcohol,i.e.,cinnamyl alcohol,monotonously increased from 44.9%to 80.3%.Meanwhile,the size of the supported Ir particles did not change significantly with x,remaining at 1.7-0.2 nm,as determined by transmission electron microscopy.The chemical state of Ir and Fe species in the Ir/Mg3Al1-xFex catalysts was examined by temperature programmed reduction by H2 and X‐ray photoelectron spectroscopy.The surface of the supported Ir particles was also examined through the in‐situ diffuse reflectance infrared Fourier‐transform of a probe molecule of CO.On the basis of these characterization results,the effects of Fe doping to Mg3Al on the structural and catalytic properties of Ir particles in selective CAL hydrogenation were discussed.The significant factors are the electron transfer from Fe2+in the Mg3Al1–xFex support to the dispersed Ir particles and the surface geometry.
文摘Monolithic catalysts for CO_(2) methanation have become an active research area for the industrial development of Power-to-Gas technology.In this study,we developed a facile and reproducible synthesis strategy for the preparation of structured NiFe catalysts on washcoated cordierite monoliths for CO_(2) methanation.The NiFe catalysts were derived from in-situ grown layered double hydroxides(LDHs)via urea hydrolysis.The influence of different washcoat materials,i.e.,alumina and silica colloidal suspensions on the formation of LDHs layer was investigated,together with the impact of total metal concentration.NiFe LDHs were precipitated on the exterior surface of cordierite washcoated with alumina,while it was found to deposit further inside the channel wall of monolith washcoated with silica due to different intrinsic properties of the colloidal solutions.On the other hand,the thickness of in-situ grown LDHs layers and the catalyst loading could be increased by high metal concentration.The best monolithic catalyst(COR-AluCC-0.5M)was robust,having a thin and well-adhered catalytic layer on the cordierite substrate.As a result,high methane yield was obtained from CO_(2) methanation at high flow rate on this structured NiFe catalysts.The monolithic catalysts appeared as promising structured catalysts for the development of industrial methanation reactor.
基金Supported by the National Natural Science Foundation of China(No.20476092)the Science Foundation of Taizhou University, China(No.09ZD12)
文摘The colloid of delaminated layered double hydroxides(LDHs), a new LDH-based catalyst, is described. The semi-heterogeneous delaminated colloidal MgPdA1-LDH, in which the total surface of catalytic site-bearing lamellae was rendered accessible for chemical reactivity, showed excellent catalysis toward Suzuki reaction. The turnover frequency of this catalyst for Suzuki reaction between bromobenzene and phenylboronic acid is about 8000 h^-1.
基金supported in part by the WPIMANA,Ministry of Education,Culture,Sports,Science and TechnologyCREST of the Japan Science and Technology Agency(JST)(Grant No.JPMJCR17N1)the support from JSPS KAKENNHI grant 15H02004 and 18H03869.
文摘Layered double hydroxides(LDHs)have attracted tremendous research interest in widely spreading applications.Most notably,transition-metal-bearing LDHs are expected to serve as highly active electrocatalysts for oxygen evolution reaction(OER)due to their layered structure combined with versatile com-positions.Furthermore,reducing the thickness of platelet LDH crystals to nanometer or even molecular scale via cleavage or delamination provides an important clue to enhance the activity.In this review,recent progresses on rational design of LDH nanosheets are reviewed,including direct synthesis via traditional coprecipitation,homogeneous precipitation,and newly developed topochemical oxidation as well as chemical exfoliation of parent LDH crystals.In addition,diverse strategies are introduced to modulate their electrochemical activity by tuning the composition of host metal cations and intercalated counter-anions,and incorporating dopants,cavi-ties,and single atoms.In particular,hybridizing LDHs with conductive components or in situ growing them on conductive substrates to produce freestanding electrodes can further enhance their intrinsic catalytic activity.A brief discussion on future research directions and prospects is also summarized.
基金financial support for this work from the Strategic Priority Research Program of CAS(XDB36030000)the National Natural Science Foundation of China(21422303,21573049,21872043,22002028)+3 种基金the National Basic Research Plan of China(2016YFA0201600)the Beijing Natural Science Foundation(2142036)the Youth Innovation Promotion Associationthe Special Program of “One Belt One Road”of CAS。
文摘The hierarchical structure of molybdenum disulfide(MoS2)nanosheet arrays stemmed from nickelcobalt layered double hydroxide(NiCo-LDH)/carbon cloth was prepared by growing the MoS_(2) nanosheet arrays onto the NiCo-LDH template which was pre-deposited onto the carbon cloth substrate.In this electrode configuration,carbon cloth is the three dimensional and conductive skeleton;NiCo-LDH nanosheets,as the template,ensure the oriented growth of MoS2 nanosheet arrays.Therefore,more MoS_(2) active sites are exposed and the catalyst exhibits good hydrogen evolution reaction activity.
基金supported by the Ministry of Science and Higher Education of the Russian Federation within governmental order for Boreskov Institute of Catalysis SB RAS (projects FWUR-2024–0038, FWUR-2024–0032 and FWUR2024–0039)
文摘An effect of Mg introduction on efficiency of high-loaded nickel catalysts in dehydrogenation of decahydroquinoline(10HQ)was inves-tigated.10HQ dehydrogenation is key process for the liquid organic hydrogen carrier(LOHC)storage technology using the quinoline/10HQ pair as H_(2)-lean/H_(2)-rich substrates.An influence of synthesis technique of Ni/Mg/Al catalysts on their properties has been demonstrated.The catalysts were synthesized through coprecipitation of Ni,Mg,Al precursors to obtain layered double hydroxides(LDH)or via syn-thesis of(∼72 wt%)Ni-Al_(2)O_(3) system-also through coprecipitation,followed by modifying with a magnesium-containing precursor.For the catalysts of the first series,the inclusion of magnesium into LDH lattice led to a significant increase in catalytic activity in hydrogen extraction(10HQ dehydrogenation reaction).Despite the decrease in the content of catalytically active nickel,a significant increase in the yield of the dehydrogenation product was observed.This regularity is presumably associated with appearance of basic sites,that accelerates the dehydrogenation reaction.In the case of the second series,activity of pre-reduced(600°C,H_(2))catalysts in dehydrogenation of 10HQ also significantly depends on a MgO content and is maximal at Mg:Ni weight ratio 0.056.Using an in-depth study of structure of the original and reduced catalyst samples(Ni-Al_(2)O_(3) and Ni-MgNiOx-Al_(2)O_(3)),it was shown that this regularity is associated with the increased resistance of catalytically active Ni particles to agglomeration during the reductive activation.Also,using the Ni-MgNiOx-Al_(2)O_(3)catalyst for hydrogen storage process(hydrogenation reaction),the possibility of deep quinoline hydrogenation(up to 10HQ)in a flow-type reactor was demonstrated for the first time.
基金financially supported by the National Natural Science Foundation of China(22078064)Natural Science Foundation of Fujian Province for Distinguished Young Scholar(2018J06002)。
文摘The hydrogenation of petroleum resin(PR)is an effective process to prepare high value-added hydrogenated PR(HPR).However,the preparation of non-noble metal-based catalysts with high catalytic activity for PR hydrogenation still remains a challenge.Herein,a La promoted Ni-based catalyst is reported through the thermal reduction of quaternary Ni La Mg Al-layered double hydroxides(Ni La Mg Al-LDHs).The incorporation of La is beneficial to the reduction and stability of Ni particles with reduced particle size,and the increased alkalinity effectively mitigates the breakage of molecular chains of PR.As a result,the La promoted Ni-based catalyst exhibits high catalytic activity and excellent stability for PR hydrogenation.A hydrogenation degree of 95.4%and 96.1%can be achieved for HC_(5)PR and HC_(9) PR with less reduced softening point,respectively.Notably,the hydrogenation degree still maintains at 92.7%even after 100 hours’reaction,much better than that without La incorporation or prepared using conventional impregnation method.
基金supported by the National Natural Science Foundation of China (No.51901018)the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology (YESS,2019QNRC001)+1 种基金the Natural Science Foundation of Beijing Municipality (No.2212037)the National Science and Technology Resources Investigation Program of China (No.2019FY 101400)。
文摘Seawater splitting is a prospective approach to yield renewable and sustainable hydrogen energy.Complex preparation processes and poor repeatability are currently considered to be an insuperable impediment to the promotion of the large-scale production and application of electrocatalysts.Avoiding the use of intricate instruments,corrosion engineering is an intriguing strategy to reduce the cost and presents considerable potential for electrodes with catalytic performance.An anode comprising quinary AlCoCrFeNi layered double hydroxides uniformly decorated on an AlCoCrFeNi high-entropy alloy is proposed in this paper via a one-step corrosion engineering method,which directly serves as a remarkably active catalyst for boosting the oxygen evolution reaction(OER)in alkaline seawater.Notably,the best-performing catalyst exhibited oxygen evolution reaction activity with overpotential values of 272.3 and 332 mV to achieve the current densities of 10 and100 mA·cm^(-2),respectively.The failure mechanism of the obtained catalyst was identified for advancing the development of multicomponent catalysts.
基金Supports from the National Natural Science Foundation of China (No 29776037) and Research Foundation of SINOPEC (X500005).
文摘The characteristic parameters were measured with floating double probe method when cold plasma was interacting with catalysts, such as MoO3/Al2O3, NiY, Pd/Al2O3, which were used in the conversion of natural gas to C2 hydrocarbons through electrical field enhanced plasma catalysis. These parameters were compared in different input voltage, different atmosphere, before and after reaction in plasma field. The interaction between catalysts and cold plasma was also investigated. This confirm that cold plasma can enhanced catalysis effect.
文摘The interactions between the components of FeCl3-Al (i-Bu)3-bipyridine -catalyst were studied by the electric conductivity of these components in a hydrogenated gasoline medium at 25℃. It was found that Al (i-Bu) existed in an 3 associated state and was then dissociated into ion pairs. The reaction between FeCl3 and Al (i-Bu)3 is the chief reaction in the formation of nano-sized particles. Simultaneously, Al (i-Bu)3 reduced Fe3+ into Fe2+. The reaction between Fe2+ and bipy generated a Fe (bipyridine)2+ complex compound, which prevented Al (i-Bu)3 from reducing Fe2+ to a lower valence (Fe+, Fe0). The excessive Al (i-Bu)3 was dissociated into ion pairs and formed a double layer, which stabilized the nano-sized particles.
文摘Poly(ethylene terephthalate)(PET)was synthesized by the in-situ polymerization method using layered double hydrotalcite(LDH)as the catalyst,and the thermal and flame retardation properties of PET were investigated as required.As identified by differential scanning calorimetry(DSC)and thermogravimetric(TGA)analysis,the crystallization rate and thermal degradation temperature of the as-prepared PET sample were enhanced compared with commercial PET sample.It was confirmed from the fire-resistant property study that the LDH can be used as an efficient flame-retardant besides functioning as a catalyst in the transesterification/polycondensation process for PET synthesis.
基金the Ministry of Science and Technology(MOST),Republic of China(ROC)(No.102WFA0700516)National Central University(No.105G910-9)for fundingfinancial support from the Industrial Technology Research Institute(No.105G910-8)
文摘Double perovskite-type catalysts including La2 CoMnO6 and La2 CuMnO6 are first evaluated for the effectiveness in removing volatile organic compounds(VOCs), and single perovskites(La CoO3, LaMnO3, and La Cu O3) are also tested for comparison. All perovskites are tested with the gas hourly space velocity(GHSV) of 30,000 hr^-1, and the temperature range of100–600℃ for C7H8 removal. Experimental results indicate that double perovskites have better activity if compared with single perovskites. Especially, toluene(C7H8) can be completely oxidized to CO2 at 300℃ as La2 Co MnO6 is applied. Characterization of catalysts indicates that double perovskites own unique surface properties and are of higher amounts of lattice oxygen,leading to higher activity. Additionally, apparent activation energy of 68 k J/mol is calculated using Mars-van Krevelen model for C7 H8 oxidation with La2 Co Mn O6 as catalyst. For durability test, both La2 Co Mn O6 and La2 CuMnO6 maintain high C7 H8 removal efficiencies of 100% and98%, respectively, at 300℃ and 30,000 hr^-1, and they also show good resistance to CO2(5%) and H2 O(g)(5%) of the gas streams tested. For various VOCs including isopropyl alcohol(C3H8 O),ethanal(C2H4O), and ethylene(C2H4) tested, as high as 100% efficiency could be achieved with double perovskite-type catalysts operated at 300–350℃, indicating that double perovskites are promising catalysts for VOCs removal.
基金financially supported by the National Natural Science Foundation of China(21701101)the National Key Research and Development Project,Key Projects of Intergovernmental International Innovation Cooperation(2018YFE0118200 and 2016YFF0204402)+4 种基金the Fundamental Research Funds for the Central Universities(18CX06063A)the Key Research and Development Project of Shandong Province(2019JZZY010506)the Scientific Research Awards Foundation for Outstanding Young Scientists of Shandong Province(ZR2018JL010)the Joint Fund of Outstanding Young Talents of Shandong Province(ZR2017BB018)the Program of Qingdao Scientific and Technological Innovation High-level Talents Project(172-1-1-zhc)。
文摘An atomically dispersed FeCo-NC material with the 3D flower-like morphology was used as a unique substrate for the controllable deposition of ultrasmall NiFe layered double hydroxide nanodots(termed as NiFe-NDs)to simultaneously promote the sluggish kinetics of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).The size-limiting growth of NiFe-NDs(~4.0 nm in diameter)was realized via the confinement of the 3D flower-like mesoporous structure and the rich N/O functionality of FeCo-NC.Benefiting from the distinctive structure with the simultaneously maximum exposure of both OER and ORR active sites,the NiFe-ND/FeCo-NC composite showed an ORR halfwave potential of 0.85 V and an OER potential of 1.66 V in0.1 mol L-1KOH at 10.0 mA cm-2.In-situ Raman analysis suggested the activity of OER was derived from the Ni sites on NiFe-ND/FeCo-NC.Moreover,the NiFe-ND/FeCo-NC-assembled Zn-air battery(ZAB)exhibited a very small discharge-charge voltage gap of 0.87 V at 20 mA cm-2and robust cycling stability.Furthermore,the NiFe-ND/FeCo-NC composite was also applicable for fabricating all-solid-state ZAB to power wearable electronics with superior cycling stability under deformation.Our work could enlighten a new applicable branch of atomically dispersed metal-nitrogen-carbon materials as unique substrates for fabricating multifunctional electrocatalysts.
基金the financial support by Guangdong Innovation Research Team for Higher Education(2017KCXTD030)High-level Talents Project of Dongguan University of Technology(KCYKYQD2017017)Engineering Research Center of None-food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes(2016GCZX009)。
文摘Ammonia synthesis by electrochemical nitrogen reduction technique is an attractive alternative to traditional Haber-Bosch process.Currently,development of an efficient and effective electrocatalyst is one of the remaining key challenges.In this work,density functional theory(DFT)computations were systematically employed on double transition metal atoms(Fe,Co,Ni,Cu and Mo)anchored Graphdiyne(GDY)for nitrogen reduction reaction(NRR).The Co-Ni heteronuclear complex and Mo-Mo homonuclear complex showed the highest NRR activity while demonstrating synergistic effect of double atomic catalytic sites towards the promising NRR activity.
基金The authors are grateful for financial support from the National Key Projects for Fundamental Research and Development of China(Nos.2018YFB1502002,2017YFA0206904,and 2017YFA0206900)the National Natural Science Foundation of China(Nos.51825205,51772305,21871279,21902168,and 52072382)+5 种基金the Beijing Natural Science Foundation(Nos.2191002,and 2194089)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB17000000)the Royal Society-Newton Advanced Fellowship(No.NA170422)the International Partnership Program of Chinese Academy of Sciences(Nos.GJHZ1819 and GJHZ201974)the K.C.Wong Education Foundation,the Central China Normal University(No.2020YBZZ019)the Youth Innovation Promotion Association of the CAS and the Open Fund of the Key Laboratory of Thermal Management and Energy Utilization of Aircraft,Ministry of Industry and Information Technology,Nanjing University of Aeronautics and Astronautics(No.CEPE2020014)。
文摘Photothermal CO_(2) reduction is an efficient and sustainable catalytic path for CO_(2) treatment.Here,we successfully fabricated a novel series of Ni-based catalysts(Ni-x)via H2 reduction of NiAl-layered double hydroxide nanosheets at temperatures(x)ranging from 300 to 600°C.With the increase of the reduction temperature,the methane generation rate of the Ni-x catalyst for photothermal CO_(2) hydrogenation gradually increased under ultraviolet-visible-infrared(UV-vis-IR)irradiation in a flow-type system.The Ni-600 catalyst showed a CO_(2) conversion of 78.4%,offering a CH4 production rate of 278.8 mmol·g^(−1)h−1,with near 100%selectivity and 100 h long-term stability.Detailed characterization analyses showed metallic Ni nanoparticles supported on amorphous alumina are the catalytically active phase for CO_(2) methanation.This study provides a possibility for large-scale conversion and utilization of CO_(2) from a sustainable perspective.