Traditional photo-electcatalyst structures of small noble metal nanoparticles assembling into large-scale photoactive semiconductors still suffer from agglomeration of noble metal nanoparticles,insufficient charge tra...Traditional photo-electcatalyst structures of small noble metal nanoparticles assembling into large-scale photoactive semiconductors still suffer from agglomeration of noble metal nanoparticles,insufficient charge transfer,undesirable photoresponse ability that restricted the photo-electrocatalytic performance.To this end,a novel design strategy is proposed in this work,namely integrating small-scale photoactive materials(doped graphene quantum dots,S,N-GQDs)with large-sized noble metal(Pd P)nanoflowers to form novel photo-electrocatalysts for high-efficient alcohol oxidation reaction.As expected,superior electrocatalytic performance of Pd P/S,N-GQDs for ethylene glycol oxidation is acquired,thanks to the nanoflower structure with larger specific surface area and abundant active sites.Furthermore,nonmetal P are demonstrated,especially optimizing the adsorption strength,enhancing the interfacial contact,reducing metal agglomeration,ensuring uniform and efficient doping of S,N-GQDs,and ultimately significantly boost the catalytic activity of photo-electrocatalysts.展开更多
Cyanide(CN−)is extensively used in the process of plating devices and for surface treatment in the electroplating industry and is extremely hazardous to humans and the environment.Peroxymonosulfate(PMS)-based advanced...Cyanide(CN−)is extensively used in the process of plating devices and for surface treatment in the electroplating industry and is extremely hazardous to humans and the environment.Peroxymonosulfate(PMS)-based advanced oxidation processes(AOPs)hold considerable promise for CN−removal.However,the activity of sulfate radical and hydroxyl radical generated in the PMS activation process is low in the base condition,leading to a drop in its efficiency in CN−removal.Thus,a photo-electrocatalytic system(PEC),developed using a TiO_(2) photoanode and a carbon aerogel cathode,was used to activate PMS for the removal of CN−from wastewater through the generation of radicals and non-radicals.The PEC/PMS system could effectively remove CN^(−),with the removal efficiency reaching 98.5%within 2 min,when PMS concentration was at the 0.25 mmol/L level,and the applied bias voltage was-0.5 V.The main active species in the PEC/PMS system were superoxide radicals and singlet oxygen,which was proved through electron paramagnetic resonance detection and quenching experiments.Results obtained through in-situ Raman measurements,photocurrent tests,and electrochemical impedance spectroscopy measurements indicated that the TiO2 could activate PMS to generate active species.Following many cycles of experimentation,it was discovered that the system displayed high catalytic performance and possessed satisfactory stability to remove CN−economically and efficiently.展开更多
基金supported by Zhejiang Provincial Natural Science Foundation of China(No.LTGS23B030002)the National Natural Science Foundation of China(Nos.21978111 and 22278175)。
文摘Traditional photo-electcatalyst structures of small noble metal nanoparticles assembling into large-scale photoactive semiconductors still suffer from agglomeration of noble metal nanoparticles,insufficient charge transfer,undesirable photoresponse ability that restricted the photo-electrocatalytic performance.To this end,a novel design strategy is proposed in this work,namely integrating small-scale photoactive materials(doped graphene quantum dots,S,N-GQDs)with large-sized noble metal(Pd P)nanoflowers to form novel photo-electrocatalysts for high-efficient alcohol oxidation reaction.As expected,superior electrocatalytic performance of Pd P/S,N-GQDs for ethylene glycol oxidation is acquired,thanks to the nanoflower structure with larger specific surface area and abundant active sites.Furthermore,nonmetal P are demonstrated,especially optimizing the adsorption strength,enhancing the interfacial contact,reducing metal agglomeration,ensuring uniform and efficient doping of S,N-GQDs,and ultimately significantly boost the catalytic activity of photo-electrocatalysts.
基金supported by the Key projects of National Natural Science Foundation of China(No. 52030003)the National Key R&D Program of China(No. 2019YFC1407800)sponsored by Joint Doctoral Training Foundation of Hebei University of Technology(HEBUT)
文摘Cyanide(CN−)is extensively used in the process of plating devices and for surface treatment in the electroplating industry and is extremely hazardous to humans and the environment.Peroxymonosulfate(PMS)-based advanced oxidation processes(AOPs)hold considerable promise for CN−removal.However,the activity of sulfate radical and hydroxyl radical generated in the PMS activation process is low in the base condition,leading to a drop in its efficiency in CN−removal.Thus,a photo-electrocatalytic system(PEC),developed using a TiO_(2) photoanode and a carbon aerogel cathode,was used to activate PMS for the removal of CN−from wastewater through the generation of radicals and non-radicals.The PEC/PMS system could effectively remove CN^(−),with the removal efficiency reaching 98.5%within 2 min,when PMS concentration was at the 0.25 mmol/L level,and the applied bias voltage was-0.5 V.The main active species in the PEC/PMS system were superoxide radicals and singlet oxygen,which was proved through electron paramagnetic resonance detection and quenching experiments.Results obtained through in-situ Raman measurements,photocurrent tests,and electrochemical impedance spectroscopy measurements indicated that the TiO2 could activate PMS to generate active species.Following many cycles of experimentation,it was discovered that the system displayed high catalytic performance and possessed satisfactory stability to remove CN−economically and efficiently.