In this work, the optimization of hydrogen production by photo-fermentation bacteria immobilized on agar gel granule was systematic investigated in batch culture. Experiment focus on the effect of some important affec...In this work, the optimization of hydrogen production by photo-fermentation bacteria immobilized on agar gel granule was systematic investigated in batch culture. Experiment focus on the effect of some important affecting factors on photo-hydrogen production. Results indicated that immobilized Rhodopseudomonas faecalis RLD-53 exhibited the highest hydrogen yield of 3.15 mol H2/mol acetate under follow optimal condition: agar granule diameter of 2.5 mm, inoculum age of 24 h, agar concentration of 2%, biomass of 4 mg/ml in agar and light intensity of 9000 lux. More importantly, immobilized photo-fermentation bacteria not only can enhance hydrogen production but can increase acids-tolerance capacity, even at pH 5.0 hydrogen also was produced, and thus hopefully immobilized photo-fermentation bacteria can be applied in the combination of dark and photo-fermentation for hydrogen production with high yield.展开更多
Temperature is one of the most important parameters that need to be controlled in photo-fermentation bio-hydrogen production(PFHP)system.Since the high temperature and big temperature fluctuation have adverse impacts ...Temperature is one of the most important parameters that need to be controlled in photo-fermentation bio-hydrogen production(PFHP)system.Since the high temperature and big temperature fluctuation have adverse impacts on bio-hydrogen yield,the system numerical simulation based on the operating conditions and environmental factors is desirable.This research focused on the investigation of heat transfer properties of the PFHP system.Enzymatic hydrolysate from agricultural residues was taken as substrate,and up-flow tubular photo-bioreactor was adopted for PFHP.Temperatures inside the photo-bioreactor were monitored.The experimental design and computational modeling for the determination of the heat transfer behavior in tubular photo-bioreactor was presented.Energy balance analysis was conducted to determine the energy efficiency,and optimize the operation parameters in order to obtain higher energy efficiency.The commercial software FLUENT was also adopted in order to predict the transient temperature distribution in the photo-bioreactor.The results showed that mathematical and computational modeling method has a clear potential for improving the performance of photo-bioreactor in the process of PFHP.Up-flow tubular bioreactor has tiny temperature fluctuant,and is suitable for PFHP.展开更多
文摘In this work, the optimization of hydrogen production by photo-fermentation bacteria immobilized on agar gel granule was systematic investigated in batch culture. Experiment focus on the effect of some important affecting factors on photo-hydrogen production. Results indicated that immobilized Rhodopseudomonas faecalis RLD-53 exhibited the highest hydrogen yield of 3.15 mol H2/mol acetate under follow optimal condition: agar granule diameter of 2.5 mm, inoculum age of 24 h, agar concentration of 2%, biomass of 4 mg/ml in agar and light intensity of 9000 lux. More importantly, immobilized photo-fermentation bacteria not only can enhance hydrogen production but can increase acids-tolerance capacity, even at pH 5.0 hydrogen also was produced, and thus hopefully immobilized photo-fermentation bacteria can be applied in the combination of dark and photo-fermentation for hydrogen production with high yield.
基金the 59th Chinese Postdoctoral Science Foundation(2016M59068)Financial supports from National Natural Science Foundation of China(51376056)Doctoral Scientific Fund Project of the Ministry of Education of China(20134105130001).
文摘Temperature is one of the most important parameters that need to be controlled in photo-fermentation bio-hydrogen production(PFHP)system.Since the high temperature and big temperature fluctuation have adverse impacts on bio-hydrogen yield,the system numerical simulation based on the operating conditions and environmental factors is desirable.This research focused on the investigation of heat transfer properties of the PFHP system.Enzymatic hydrolysate from agricultural residues was taken as substrate,and up-flow tubular photo-bioreactor was adopted for PFHP.Temperatures inside the photo-bioreactor were monitored.The experimental design and computational modeling for the determination of the heat transfer behavior in tubular photo-bioreactor was presented.Energy balance analysis was conducted to determine the energy efficiency,and optimize the operation parameters in order to obtain higher energy efficiency.The commercial software FLUENT was also adopted in order to predict the transient temperature distribution in the photo-bioreactor.The results showed that mathematical and computational modeling method has a clear potential for improving the performance of photo-bioreactor in the process of PFHP.Up-flow tubular bioreactor has tiny temperature fluctuant,and is suitable for PFHP.