The composite oxides xAg/Co_(0.93)Ce_(0.07)(x=Ag/(Co+Ce) molar ratio),intended for use as high performance catalytic materials,were successfully prepared via citric acid complexation.The effects of silver on ...The composite oxides xAg/Co_(0.93)Ce_(0.07)(x=Ag/(Co+Ce) molar ratio),intended for use as high performance catalytic materials,were successfully prepared via citric acid complexation.The effects of silver on the performance of these substances during soot combustion were subsequently investigated.Under O_2,the 0.3Ag/Co_(0.93)Ce_(0.07) catalyst resulted in the lowest ignition temperature,T_(10),of197 ℃,while the minimum light-off temperature was obtained from both 0.2Ag/Co_(0.93)Ce_(0.07) and0.3Ag/Co_(0.93)Ce_(0.07) in the NO_x atmosphere.These materials were also characterized by various techniques,including H_2,soot and NO_x temperature programmed reduction,X-ray diffraction,and electron paramagnetic resonance,Raman,X-ray photoelectron,and Fourier transform infrared spectroscopic analyses.The results demonstrated that silver significantly alters the catalytic behavior under both O_2 and NO_x,even though the lattice structure of the mixed oxide is not affected.Surface silver oxides generated under the O_2 atmosphere favor soot combustion by participating in the redox cycles between soot and the silver oxide,whereas the AgNO_3 that forms in a NO_x-rich atmosphere facilitates soot abatement at a lower temperature.The inferior activity of AgNO_3 relative to that of Ag_2O results in the different catalytic performance in the presence of NO_x or O_2.展开更多
Composite solid propellants(CSPs) have widely been used as main energy source for propelling the rockets in both space and military applications. Internal ballistic parameters of rockets like characteristic exhaust ve...Composite solid propellants(CSPs) have widely been used as main energy source for propelling the rockets in both space and military applications. Internal ballistic parameters of rockets like characteristic exhaust velocity, specific impulse, thrust, burning rate etc., are measured to assess and control the performance of rocket motors. The burn rate of solid propellants has been considered as most vital parameter for design of solid rocket motors to meet specific mission requirements. The burning rate of solid propellants can be tailored by using different constituents, extent of oxidizer loading and its particle size and more commonly by incorporating suitable combustion catalysts. Various metal oxides(MOs),complexes, metal powders and metal alloys have shown positive catalytic behaviour during the combustion of CSPs. These are usually solid-state catalysts that play multiple roles in combustion of CSPs such as reduction in activation energy, enhancement of rate of reaction, modification of sequences in reaction-phase, influence on condensed-phase combustion and participation in combustion process in gas-phase reactions. The application of nanoscale catalysts in CSPs has increased considerably in recent past due to their superior catalytic properties as compared to their bulk-sized counterparts. A large surface-to-volume ratio and quantum size effect of nanocatalysts are considered to be plausible reasons for improving the combustion characteristics of propellants. Several efforts have been made to produce nanoscale combustion catalysts for advanced propellant formulations to improve their energetics. The work done so far is largely scattered. In this review, an effort has been made to introduce various combustion catalysts having at least a metallic entity. Recent developments of nanoscale combustion catalysts with their specific merits are discussed. The combustion chemistry of a typical CSP is briefly discussed for providing a better understanding on role of combustion catalysts in burning rate enhancement. Available information on different types of combustion nanocatalysts is also presented with critical comments.展开更多
A Sb-Fe-carbon-fiber (CF) composite was prepared by a chemical vapor deposition (CVD) method with in situ growth of CFs us- ing Sb203/Fe2O3 as the precursor and acetylene (C2H2) as the carbon source. The Sb-Fe-C...A Sb-Fe-carbon-fiber (CF) composite was prepared by a chemical vapor deposition (CVD) method with in situ growth of CFs us- ing Sb203/Fe2O3 as the precursor and acetylene (C2H2) as the carbon source. The Sb-Fe-CF composite was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), and its electrochemical per- formance was investigated by galvanostatic charge-discharge cycling and electrochemical impedance spectroscopy. The Sb-Fe-CF composite shows a better cycling stability than the Sb-amorphous-carbon composite prepared by the same CVD method but using Sb2O3 as the precur- sor. Improvements in cycling stability of the Sb-Fe-CF composite can be attributed to the formation of three-dimensional network structure by CFs, which can connect Sb particles firmly. In addition, the CF layer can buffer the volume change effectively.展开更多
A series of novel Ni/CeOe-Al2O3 composite catalysts were synthesized by one-step citric acid complex method, The as-synthesized catalysts were characterized by N2 physical adsorption/desorption, X-ray diffraction (XR...A series of novel Ni/CeOe-Al2O3 composite catalysts were synthesized by one-step citric acid complex method, The as-synthesized catalysts were characterized by N2 physical adsorption/desorption, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, hydrogen temperature-programmed reduction (Hz-TPR), X-ray photoelectron spectroscopy (XPS) and thermogravimetry analysis (TGA). The effects of nickel content, calcination and reaction temperatures, gas hourly space velocity (GHSV) and inert gas dilution of N2 on their performance of catalytic partial oxidation of methane (CPOM) were investigated. Catalytic activity test results show that the highest methane conversion (〉85%), the best selectivities to carbon monoxide (〉87%) and to hydrogen (〉95%), the excellent stability and perfect Hz/CO ratio (2.0) can be obtained over Ni/CeO2-Al2O3 with 8 wt% Ni content calcined at 700 ℃ under the reaction condition of 750 ℃, CH4/O2 ratio of 2 : 1 and gas hourly space velocity of 12000 mL.h-1 .g-1. Characterization results show that the good catalytic performance of this composite catalyst can be contributed to its large specific surface area (~108 m2.g-1), small crystallite size, easy reducibility and low coking rate.展开更多
A novel micro-micro/mesoporous aluminosilicate ZSM-5-Y/MCM-41 composite molecular sieve with a MCM-41 type structure was synthesized through a novel process of the self-assembly of CTAB surfactant micellae with silica...A novel micro-micro/mesoporous aluminosilicate ZSM-5-Y/MCM-41 composite molecular sieve with a MCM-41 type structure was synthesized through a novel process of the self-assembly of CTAB surfactant micellae with silica-alumina source originated from alkaline treatment of ZSM-5 zeolite. The physical properties of the ZSM-5- Y/MCM-41 composite molecular sieve were characterized by XRD, Py-FTIR and N2 adsorption-desorption techniques. Different kinds of molecular sieves including ZSM-5, Y zeolite, AI-MCM-41, ZSM-5/MCM-41 and ZSM-5-Y/MCM- 41 as cracking catalysts were investigated, using 1,3,5-triisopropylbenzene (1,3,5-TIPB) as the probe molecule. Catalytic tests showed that the ZSM-5-Y/MCM-41 composite molecular sieve exhibited higher catalytic activity compared with the microporous ZSM-5 zeolite, Y zeolite, mesoporous A1-MCM-41 molecular sieve and ZSM-5/MCM-41 composite molecular sieve under the same conditions. The remarkable catalytic activity was mainly attributed to the presence of the hierarchical pore structure and proper acidity in the ZSM-5-Y/MCM-41 composite catalyst. Meanwhile, a carbcnium ion mechanism was put forward for the cracking of 1,3,5-TIPB.展开更多
Using rectorite extrudates from calcined rectorite powder as the starting material, a series of ZSM-5/rectorite composites were prepared via the in-situ crystallization method. The physicochemical properties and propy...Using rectorite extrudates from calcined rectorite powder as the starting material, a series of ZSM-5/rectorite composites were prepared via the in-situ crystallization method. The physicochemical properties and propylene boosting performance of the resulting samples were characterized by using X-ray diffraction, scan- ning electronic microscopy/energy dispersive spectrometer, N2 adsorption-desorption, and Fourier transformed in/tared spectroscopy of pyndine adsorption, respectively, and assessed by using Daqing atmospheric residue as Iced- stock. The results showed that the ZSM-5/rectorite composites in which the ZSM-5 phase grows inositu as a 2-3 p,m thick layer on rectorite particles have a trimodal microporous-mesoporous-macroporous structure and thus exhibit outstanding propylene boosting performance. Compared with a commercial ZSM-5 incorporated fluid catalytic cracking catalyst, the ZSM-5/rectorite composite incorporated catalyst increased the yield and selectivity of propylene by 2.44% and 5.35%, respectively.展开更多
The central composite design in the modeling and optimization of catalytic dehydration of ethanol to ethylene was performed to improve the ethylene yield.A total of 20 experiments at random were conducted to investiga...The central composite design in the modeling and optimization of catalytic dehydration of ethanol to ethylene was performed to improve the ethylene yield.A total of 20 experiments at random were conducted to investigate the effect of reaction temperature,Si/Al ratios of H-ZSM-5 catalyst and liquid hourly space velocity(LHSV) on the ethylene yield.The results show that the relationship between ethylene yield and the three significant independent variables can be approximated by a nonlinear polynomial model,with R-squared of 99.9%and adjusted R-squared of 99.8%.The maximal response for ethylene yield is 93.4%under the optimal condition of 328 ℃,Si/Al ratio 85,and LHSV 3.8 h-1.展开更多
For investigating the effect of dealumination on the pore structure and catalytic performance, ZSM-5/Y composite zeolites synthesized in situ from NaY gel were dealuminated by steaming at different temperatures. XRD ...For investigating the effect of dealumination on the pore structure and catalytic performance, ZSM-5/Y composite zeolites synthesized in situ from NaY gel were dealuminated by steaming at different temperatures. XRD (X-ray diffraction) characterization indicates that the relative crystallinity of the composite zeolites decreases with the increase in Si/Al ratio after steaming. N2 adsorption-desorption suggests that more mesopores are formed while the BET (Brunauer, Emmett and Teller) specific surface area and the micropore specific surface area decrease as the temperature of steaming rises. Daqing heavy oil was used as feedstock to test the catalytic cracking activity of ZSM-5/Y composite zeolites. The experimental results of the catalytic cracking performance reveal that the distribution of products differs due to the different conditions of hydrothermal treatment. Further hydrothermal treatment leads to an increase in the yield of light oil, and a decrease in the yield of gas products and coke.展开更多
In the presence of titanium dioxide powder, cross-linking reaction between commercial polyvinyl alcohol(PVA)-based macromonomer and acrylic acid(AA) was initiated with potassium persulfate in an emulsifying system. As...In the presence of titanium dioxide powder, cross-linking reaction between commercial polyvinyl alcohol(PVA)-based macromonomer and acrylic acid(AA) was initiated with potassium persulfate in an emulsifying system. As a result, PVA-AA/TiO2 composite gel particles were obtained. The morphology and composition of the particles were analyzed with scanning electron microscopy(SEM), energy scattering x-ray spectroscopy(EDS), Fourier infrared spectroscopy(FTIR), and thermogravimetric analysis(TGA). The analysis results confirmed that the particles were the expected ones. TiO2 was dispersed homogeneously within the spheroidal particles. Compared to the control gel, the composite gel particles not only contained Ti element but also showed higher thermal stability. In addition, the photo-catalytic behavior of the particles for the degradation of methyl orange contained in aqueous solution was examined. The particles exhibited photocatalytic characteristic for the degradation of the model dye, which could be modulated by simply varying the amount of cross-linking agent or TiO2. The photo-catalytic degradation percentage of methyl orange maintained at 91%-96% after using the particles three times, which indicated that TiO2 could played its role repeatedly via being fixated within polyvinyl alcohol-based gel.展开更多
Waste water expulsion containing toxic and hazardous ingredients from textile industry is one of the biggest concerns in this modern age. N-doped nano composites as an efficient catalyst are playing a significant role...Waste water expulsion containing toxic and hazardous ingredients from textile industry is one of the biggest concerns in this modern age. N-doped nano composites as an efficient catalyst are playing a significant role in reducing the toxicity of that textile effluent. N-doped Ti-Mel capped Ag<sub>2</sub>S NCs (N-Ti-C/Ag<sub>2</sub>S NCs) and N-doped TiO<sub>2</sub> capped Ag<sub>2</sub>S NCs (TiO<sub>2</sub>/Ag<sub>2</sub>S NCs) were synthesized via calcinations at 700°C, whereas Ag<sub>2</sub>S NCs was prepared by simple hydrothermal treatment process at 120°C and confirmed by FTIR and SEM (EDX). N-Ti-C/Ag<sub>2</sub>S NCs were applied in presence of reducing agent NaBH<sub>4</sub> with a green method to decolorize the textile dyes Levafix Amber RR (LA) and Remazol Blue RR (RB). Moreover, Ag<sub>2</sub>S NCs, TiO<sub>2</sub>/Ag<sub>2</sub>S NCs, NaBH<sub>4</sub> and TiO<sub>2</sub> were also investigated. Using UV-visible spectroscopy the progress time was measured to decolorize textile dye RB and completed within 3.15 mins, 12.15 mins, 12.15 mins for N-Ti-C/Ag<sub>2</sub>S NCs, Ag<sub>2</sub>S NCs and TiO<sub>2</sub>/Ag<sub>2</sub>S NCs respectively, while for LA the catalytic reduction taken for the same NCs was 8.15 mins, 12.15 mins and 30.15 mins respectively. N-Ti-C/Ag<sub>2</sub>S NCs based catalyst afforded excellent catalytic reduction activity in both cases. Interestingly the effect of NaBH<sub>4</sub> itself and TiO<sub>2</sub> in presence of NaBH<sub>4</sub> was less than 5% after 30 mins. Finally, the reusability for Ti-Mel capped Ag<sub>2</sub>S NCs evaluated up to four cycles.展开更多
Residue deep hydrotreating(RDHT)process was developed by the Research Institute of Petroleum Processing(RIPP)to provide high quality feedstock for deep catalytic cracking(DCC)process.In this research work,the effects ...Residue deep hydrotreating(RDHT)process was developed by the Research Institute of Petroleum Processing(RIPP)to provide high quality feedstock for deep catalytic cracking(DCC)process.In this research work,the effects of RDHT process and reaction severity on heteroatom removal,hydrogen content increase,hydrocarbon composition improvement,and DCC product yields were studied.It was showed that the RDHT process can effectively reduce heteroatoms,increase hydrogen content and improve the hydrocarbon compositions,which can contribute to an increase of light olefins yield in DCC unit.展开更多
The rules on regulating aromatic compounds production was investigated by aqueous cat- alytic reforming of sorbitol. It was found that aromatics, ketones, furans, organic acids were main compounds in organic phase. Th...The rules on regulating aromatic compounds production was investigated by aqueous cat- alytic reforming of sorbitol. It was found that aromatics, ketones, furans, organic acids were main compounds in organic phase. The obvious effect of metal content showed that the highest carbon selectivity of aromatics was 34.36% when 3wt% Ni content was loaded on HZSM-5 zeolite modified by MCM-41. However, it was decreased only to 4.82% when Ni content was improved to 20wt%. Meanwhile, different reaction parameters also displayed important impacts on carbon selectivity. It was improved with the increase of temperature, while it was decreased as liquid hourly space velocity and hydrogen pressure was increased. The results showed that appropriate higher temperature, longer contact time and lower hy- drogen pressure were in favor of aromatics information, which suggested a feasible process to solve energy crisis.展开更多
Magnetic Fe3 O4@Cu/Ce microspheres were successfully prepared by one-step solvothermal approach and further utilized to remediate toxic arsenic(As(Ⅲ)) pollution. The effects of Cu/Ce elements co-doping on the crystal...Magnetic Fe3 O4@Cu/Ce microspheres were successfully prepared by one-step solvothermal approach and further utilized to remediate toxic arsenic(As(Ⅲ)) pollution. The effects of Cu/Ce elements co-doping on the crystal structure, catalytic oxidation and adsorption behaviors of magnetic microspheres were researched systematically. The results showed that with the aid of Cu/Ce elements, the grain size reduced, lattice defects increased, and the oxygen vacancies and surface hydroxyl groups were improved. Therefore, Cu/Ce elements endowed magnetic Fe3 O4@Cu/Ce microspheres with excellent As(III) removal performance, whose maximum adsorption capacity reached 139.19 mg/g. The adsorption mechanism mainly involved catalytic oxidant co-adsorption. This research developed a feasible strategy for the preparation of high efficiency magnetic adsorbent to enhance the removal of As(Ⅲ).展开更多
Borohydrides present interesting options for the electrochemical power generation acting either as hydrogen source or anodic fuel for direct borohydride fuel cells(DBFC).In this work,Mg-Ni composite synthesized by mec...Borohydrides present interesting options for the electrochemical power generation acting either as hydrogen source or anodic fuel for direct borohydride fuel cells(DBFC).In this work,Mg-Ni composite synthesized by mechanically alloying method,used as the catalyst for the hydrolysis of borohydride,has been investigated.Co-doping treatment has been carried out for the purpose of improving the hydrolysis rate further.The as-prepared and Co-doped Mg-Ni composites with low cost showed high catalytic activity to the hydrolysis of borohydride for hydrogen generation.After Co-doping,the hydrogen generation rate was around 280 ml·g-1·min-1.Borohydride would be a promising hydrogen source for fuel cells.展开更多
The functional materials based on natural zeolite (clinoptilolite), TiO2-zeolite and Ag-TiO2-zeolite have been successfully synthesized by solid-state reaction in fast-hydrothermal conditions. The obtained functiona...The functional materials based on natural zeolite (clinoptilolite), TiO2-zeolite and Ag-TiO2-zeolite have been successfully synthesized by solid-state reaction in fast-hydrothermal conditions. The obtained functional materials were investigated by X-ray diffraction (XRD), FT-1R (Fourier transform infrared) spectroscopy, DRUV-VIS (diffuse reflectance ultraviolet-visible) spectroscopy, BET (Brunauer-Emmett-Teller) and SEM/EDX (scanning electron microscope/energy dispersive X-ray spectrometer) analyses. The XRD results indicated that the clinoptilolite structure has a good thermal stabilization after the fast-hydrothermal treatment. Also, the high specific surface area about 92.55 m^2.g^-1 was noticed for Ag-TiO2-zeolite functional material. The presence of dopants was evidenced from EDX spectra. The enhanced bactericidal activity of Ag-TiO2-zeolite catalyst is proved through damaging of Enterococcusfaecalis colonies under visible irradiation, at different material doses and irradiation times.展开更多
(PEO)8LiClO4-SiO2 composite polymer electrolytes(CPEs)were prepared by in-situ reaction,in which ethyl-orthosilicate(TEOS)was catalyzed by HCl and NH3.H2O,respectively.The ionic conductivity,the contact angle and the ...(PEO)8LiClO4-SiO2 composite polymer electrolytes(CPEs)were prepared by in-situ reaction,in which ethyl-orthosilicate(TEOS)was catalyzed by HCl and NH3.H2O,respectively.The ionic conductivity,the contact angle and the morphology of inorganic particles in the CPEs were investigated by AC impedance spectra,contact angle method and TEM.The conductivities of acid-catalyzed CPE and alkali-catalyzed CPE are 2.2×10-5and 1.1×10-5S/cm respectively at 30℃.The results imply that the catalyst plays an important role in the structure of in-situ preparation of SiO2,and influences the surface energy and conductivity of CPE films directly.Meanwhile,the ionic conductivity is related to the surface energy.展开更多
Novel composite material with a wide pore distribution was synthesized by an in situ technique using spent FCC catalyst as raw material. The characterization results indicated that the composite material contained 56....Novel composite material with a wide pore distribution was synthesized by an in situ technique using spent FCC catalyst as raw material. The characterization results indicated that the composite material contained 56.7% of zeolite Y and exhibited a much larger specific surface area and pore volume as well as strong hydrothermal stability. Fluid catalytic cracking(FCC) catalyst was prepared based on the composite material. The results indicated that the as-prepared catalyst possessed a unique pore structure that was advantageous to the diffusion-controlled reactions. In addition, the attrition resistance, activity and hydrothermal stability of the studied catalyst were superior to those of the reference catalyst. The catalyst also exhibited excellent nickel and vanadium passivation performance, strong bottoms upgrading selectivity, and better gasoline and coke selectivity. In comparison to the reference catalyst, the yields of the gasoline and light oil increased by 1.61 and 1.31 percentage points, respectively, and the coke yield decreased by 0.22 percentage points, and the olefin content in the produced gasoline reduced by 2.51 percentage points, with the research octane number increased by 0.7 unit.展开更多
Cellulose nanocrystal(CNC)prepared by hydrolysis of cotton linters with sulfuric acid was used to react with chloroauric acid to manufacture a gold nanoparticle/CNC composite.The composite was then graft-copolymerized...Cellulose nanocrystal(CNC)prepared by hydrolysis of cotton linters with sulfuric acid was used to react with chloroauric acid to manufacture a gold nanoparticle/CNC composite.The composite was then graft-copolymerized with N-isopropylacrylamide to obtain a photo-thermal ultrafine gold nanoparticles/CNC-based hydrogel.The hydrogel was studied by performing scanning electron microscopy,and it was found that the prepared hydrogel had a network structure.The temperature of the hydrogel increased from 25℃to 39℃and its volume decreased by 30%when it was exposed to visible light(400~750 nm)for 1 h.The experiment results indicated that the prepared photo-thermal CNC-based hydrogel has thermal responsiveness and photo-thermal properties.展开更多
Nd2O3 was used to support Al2O3 and ZnO to prepare a supported solid base catalyst and investigate the effect of catalyst and reaction conditions on the synthesis of tert-butyl acetate. The composited oxide of Nd2O3/A...Nd2O3 was used to support Al2O3 and ZnO to prepare a supported solid base catalyst and investigate the effect of catalyst and reaction conditions on the synthesis of tert-butyl acetate. The composited oxide of Nd2O3/Al2O3-Nd2O3/ZnO exhibited excellent catalytic activity for the synthsis of tert-butyl acetate. The molar ratio of tert-butanol to acetic anhydride is 3∶1, the catalyst in total amount of reactant nearly 0.5%, and reaction time 6 h. With the above conditions, yield of the reaction could reach to 65%. The structure of product were verified by the FT-IR, Element analysis, and MS, which proved that the product was tert-butyl acetate.展开更多
MXene is a new type of layered two-dimensional transition metal carbide materials differing from graphene, demonstrating intriguing chemical/physical properties. Here the chemical modification of MXene and next fabric...MXene is a new type of layered two-dimensional transition metal carbide materials differing from graphene, demonstrating intriguing chemical/physical properties. Here the chemical modification of MXene and next fabrication of core-shell MXene-COOH@(PEI/PAA)_n composites have been investigated. The obtained MXene-based composites were treated with gold nanoparticles to form MXene—COOH@(PEI/PAA)_n@AuNPs nanocomposites, and their catalytic properties for nitro-compounds were studied. The prepared nanocomposites demonstrated good catalytic activity and reproducibility, showing potential applications in composite catalysts and environmental fields.展开更多
基金supported by the National Natural Science Foundation of China(21577088)~~
文摘The composite oxides xAg/Co_(0.93)Ce_(0.07)(x=Ag/(Co+Ce) molar ratio),intended for use as high performance catalytic materials,were successfully prepared via citric acid complexation.The effects of silver on the performance of these substances during soot combustion were subsequently investigated.Under O_2,the 0.3Ag/Co_(0.93)Ce_(0.07) catalyst resulted in the lowest ignition temperature,T_(10),of197 ℃,while the minimum light-off temperature was obtained from both 0.2Ag/Co_(0.93)Ce_(0.07) and0.3Ag/Co_(0.93)Ce_(0.07) in the NO_x atmosphere.These materials were also characterized by various techniques,including H_2,soot and NO_x temperature programmed reduction,X-ray diffraction,and electron paramagnetic resonance,Raman,X-ray photoelectron,and Fourier transform infrared spectroscopic analyses.The results demonstrated that silver significantly alters the catalytic behavior under both O_2 and NO_x,even though the lattice structure of the mixed oxide is not affected.Surface silver oxides generated under the O_2 atmosphere favor soot combustion by participating in the redox cycles between soot and the silver oxide,whereas the AgNO_3 that forms in a NO_x-rich atmosphere facilitates soot abatement at a lower temperature.The inferior activity of AgNO_3 relative to that of Ag_2O results in the different catalytic performance in the presence of NO_x or O_2.
文摘Composite solid propellants(CSPs) have widely been used as main energy source for propelling the rockets in both space and military applications. Internal ballistic parameters of rockets like characteristic exhaust velocity, specific impulse, thrust, burning rate etc., are measured to assess and control the performance of rocket motors. The burn rate of solid propellants has been considered as most vital parameter for design of solid rocket motors to meet specific mission requirements. The burning rate of solid propellants can be tailored by using different constituents, extent of oxidizer loading and its particle size and more commonly by incorporating suitable combustion catalysts. Various metal oxides(MOs),complexes, metal powders and metal alloys have shown positive catalytic behaviour during the combustion of CSPs. These are usually solid-state catalysts that play multiple roles in combustion of CSPs such as reduction in activation energy, enhancement of rate of reaction, modification of sequences in reaction-phase, influence on condensed-phase combustion and participation in combustion process in gas-phase reactions. The application of nanoscale catalysts in CSPs has increased considerably in recent past due to their superior catalytic properties as compared to their bulk-sized counterparts. A large surface-to-volume ratio and quantum size effect of nanocatalysts are considered to be plausible reasons for improving the combustion characteristics of propellants. Several efforts have been made to produce nanoscale combustion catalysts for advanced propellant formulations to improve their energetics. The work done so far is largely scattered. In this review, an effort has been made to introduce various combustion catalysts having at least a metallic entity. Recent developments of nanoscale combustion catalysts with their specific merits are discussed. The combustion chemistry of a typical CSP is briefly discussed for providing a better understanding on role of combustion catalysts in burning rate enhancement. Available information on different types of combustion nanocatalysts is also presented with critical comments.
基金supported by the Zijin Program of Zhejiang Universitythe Fundamental Research Funds for the Central Universities (No.2010QNA4003)+1 种基金the Ph.D. Program Foundation of the Ministry of Education of China (No.20100101120024)the Foundation of Education Office of Zhejiang Province, China (No.Y201016484)
文摘A Sb-Fe-carbon-fiber (CF) composite was prepared by a chemical vapor deposition (CVD) method with in situ growth of CFs us- ing Sb203/Fe2O3 as the precursor and acetylene (C2H2) as the carbon source. The Sb-Fe-CF composite was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), and its electrochemical per- formance was investigated by galvanostatic charge-discharge cycling and electrochemical impedance spectroscopy. The Sb-Fe-CF composite shows a better cycling stability than the Sb-amorphous-carbon composite prepared by the same CVD method but using Sb2O3 as the precur- sor. Improvements in cycling stability of the Sb-Fe-CF composite can be attributed to the formation of three-dimensional network structure by CFs, which can connect Sb particles firmly. In addition, the CF layer can buffer the volume change effectively.
基金supported by the National Natural Science Foundation of China(Grants No.21067004 and No.21263005)the Technological Foundation of Jiangxi Province Education Office(No.GJJ12344)+1 种基金the Young Science and Technolgy Project of Jiangxi Province(No.20133BAB21003)the Young Scientist Training Project of Jiangxi Province(No.20122BCB23015)
文摘A series of novel Ni/CeOe-Al2O3 composite catalysts were synthesized by one-step citric acid complex method, The as-synthesized catalysts were characterized by N2 physical adsorption/desorption, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, hydrogen temperature-programmed reduction (Hz-TPR), X-ray photoelectron spectroscopy (XPS) and thermogravimetry analysis (TGA). The effects of nickel content, calcination and reaction temperatures, gas hourly space velocity (GHSV) and inert gas dilution of N2 on their performance of catalytic partial oxidation of methane (CPOM) were investigated. Catalytic activity test results show that the highest methane conversion (〉85%), the best selectivities to carbon monoxide (〉87%) and to hydrogen (〉95%), the excellent stability and perfect Hz/CO ratio (2.0) can be obtained over Ni/CeO2-Al2O3 with 8 wt% Ni content calcined at 700 ℃ under the reaction condition of 750 ℃, CH4/O2 ratio of 2 : 1 and gas hourly space velocity of 12000 mL.h-1 .g-1. Characterization results show that the good catalytic performance of this composite catalyst can be contributed to its large specific surface area (~108 m2.g-1), small crystallite size, easy reducibility and low coking rate.
基金supported by the 973 plan item under Grants(2003CB615802)
文摘A novel micro-micro/mesoporous aluminosilicate ZSM-5-Y/MCM-41 composite molecular sieve with a MCM-41 type structure was synthesized through a novel process of the self-assembly of CTAB surfactant micellae with silica-alumina source originated from alkaline treatment of ZSM-5 zeolite. The physical properties of the ZSM-5- Y/MCM-41 composite molecular sieve were characterized by XRD, Py-FTIR and N2 adsorption-desorption techniques. Different kinds of molecular sieves including ZSM-5, Y zeolite, AI-MCM-41, ZSM-5/MCM-41 and ZSM-5-Y/MCM- 41 as cracking catalysts were investigated, using 1,3,5-triisopropylbenzene (1,3,5-TIPB) as the probe molecule. Catalytic tests showed that the ZSM-5-Y/MCM-41 composite molecular sieve exhibited higher catalytic activity compared with the microporous ZSM-5 zeolite, Y zeolite, mesoporous A1-MCM-41 molecular sieve and ZSM-5/MCM-41 composite molecular sieve under the same conditions. The remarkable catalytic activity was mainly attributed to the presence of the hierarchical pore structure and proper acidity in the ZSM-5-Y/MCM-41 composite catalyst. Meanwhile, a carbcnium ion mechanism was put forward for the cracking of 1,3,5-TIPB.
基金Supported by the Ministry of Science and Technology of China Through the National Basic Research Program (2010CB226905)the National Natural Science Foundation of China for the Youth (20706059)
文摘Using rectorite extrudates from calcined rectorite powder as the starting material, a series of ZSM-5/rectorite composites were prepared via the in-situ crystallization method. The physicochemical properties and propylene boosting performance of the resulting samples were characterized by using X-ray diffraction, scan- ning electronic microscopy/energy dispersive spectrometer, N2 adsorption-desorption, and Fourier transformed in/tared spectroscopy of pyndine adsorption, respectively, and assessed by using Daqing atmospheric residue as Iced- stock. The results showed that the ZSM-5/rectorite composites in which the ZSM-5 phase grows inositu as a 2-3 p,m thick layer on rectorite particles have a trimodal microporous-mesoporous-macroporous structure and thus exhibit outstanding propylene boosting performance. Compared with a commercial ZSM-5 incorporated fluid catalytic cracking catalyst, the ZSM-5/rectorite composite incorporated catalyst increased the yield and selectivity of propylene by 2.44% and 5.35%, respectively.
基金Supported by National Natural Science Foundation of China(No.70671072)
文摘The central composite design in the modeling and optimization of catalytic dehydration of ethanol to ethylene was performed to improve the ethylene yield.A total of 20 experiments at random were conducted to investigate the effect of reaction temperature,Si/Al ratios of H-ZSM-5 catalyst and liquid hourly space velocity(LHSV) on the ethylene yield.The results show that the relationship between ethylene yield and the three significant independent variables can be approximated by a nonlinear polynomial model,with R-squared of 99.9%and adjusted R-squared of 99.8%.The maximal response for ethylene yield is 93.4%under the optimal condition of 328 ℃,Si/Al ratio 85,and LHSV 3.8 h-1.
文摘For investigating the effect of dealumination on the pore structure and catalytic performance, ZSM-5/Y composite zeolites synthesized in situ from NaY gel were dealuminated by steaming at different temperatures. XRD (X-ray diffraction) characterization indicates that the relative crystallinity of the composite zeolites decreases with the increase in Si/Al ratio after steaming. N2 adsorption-desorption suggests that more mesopores are formed while the BET (Brunauer, Emmett and Teller) specific surface area and the micropore specific surface area decrease as the temperature of steaming rises. Daqing heavy oil was used as feedstock to test the catalytic cracking activity of ZSM-5/Y composite zeolites. The experimental results of the catalytic cracking performance reveal that the distribution of products differs due to the different conditions of hydrothermal treatment. Further hydrothermal treatment leads to an increase in the yield of light oil, and a decrease in the yield of gas products and coke.
基金Funded by the Science&Technology Program of Fujian Province(No.2017H0018)
文摘In the presence of titanium dioxide powder, cross-linking reaction between commercial polyvinyl alcohol(PVA)-based macromonomer and acrylic acid(AA) was initiated with potassium persulfate in an emulsifying system. As a result, PVA-AA/TiO2 composite gel particles were obtained. The morphology and composition of the particles were analyzed with scanning electron microscopy(SEM), energy scattering x-ray spectroscopy(EDS), Fourier infrared spectroscopy(FTIR), and thermogravimetric analysis(TGA). The analysis results confirmed that the particles were the expected ones. TiO2 was dispersed homogeneously within the spheroidal particles. Compared to the control gel, the composite gel particles not only contained Ti element but also showed higher thermal stability. In addition, the photo-catalytic behavior of the particles for the degradation of methyl orange contained in aqueous solution was examined. The particles exhibited photocatalytic characteristic for the degradation of the model dye, which could be modulated by simply varying the amount of cross-linking agent or TiO2. The photo-catalytic degradation percentage of methyl orange maintained at 91%-96% after using the particles three times, which indicated that TiO2 could played its role repeatedly via being fixated within polyvinyl alcohol-based gel.
文摘Waste water expulsion containing toxic and hazardous ingredients from textile industry is one of the biggest concerns in this modern age. N-doped nano composites as an efficient catalyst are playing a significant role in reducing the toxicity of that textile effluent. N-doped Ti-Mel capped Ag<sub>2</sub>S NCs (N-Ti-C/Ag<sub>2</sub>S NCs) and N-doped TiO<sub>2</sub> capped Ag<sub>2</sub>S NCs (TiO<sub>2</sub>/Ag<sub>2</sub>S NCs) were synthesized via calcinations at 700°C, whereas Ag<sub>2</sub>S NCs was prepared by simple hydrothermal treatment process at 120°C and confirmed by FTIR and SEM (EDX). N-Ti-C/Ag<sub>2</sub>S NCs were applied in presence of reducing agent NaBH<sub>4</sub> with a green method to decolorize the textile dyes Levafix Amber RR (LA) and Remazol Blue RR (RB). Moreover, Ag<sub>2</sub>S NCs, TiO<sub>2</sub>/Ag<sub>2</sub>S NCs, NaBH<sub>4</sub> and TiO<sub>2</sub> were also investigated. Using UV-visible spectroscopy the progress time was measured to decolorize textile dye RB and completed within 3.15 mins, 12.15 mins, 12.15 mins for N-Ti-C/Ag<sub>2</sub>S NCs, Ag<sub>2</sub>S NCs and TiO<sub>2</sub>/Ag<sub>2</sub>S NCs respectively, while for LA the catalytic reduction taken for the same NCs was 8.15 mins, 12.15 mins and 30.15 mins respectively. N-Ti-C/Ag<sub>2</sub>S NCs based catalyst afforded excellent catalytic reduction activity in both cases. Interestingly the effect of NaBH<sub>4</sub> itself and TiO<sub>2</sub> in presence of NaBH<sub>4</sub> was less than 5% after 30 mins. Finally, the reusability for Ti-Mel capped Ag<sub>2</sub>S NCs evaluated up to four cycles.
基金This work was supported by the Science and Technology Project of Sinopec(118015-1).
文摘Residue deep hydrotreating(RDHT)process was developed by the Research Institute of Petroleum Processing(RIPP)to provide high quality feedstock for deep catalytic cracking(DCC)process.In this research work,the effects of RDHT process and reaction severity on heteroatom removal,hydrogen content increase,hydrocarbon composition improvement,and DCC product yields were studied.It was showed that the RDHT process can effectively reduce heteroatoms,increase hydrogen content and improve the hydrocarbon compositions,which can contribute to an increase of light olefins yield in DCC unit.
文摘The rules on regulating aromatic compounds production was investigated by aqueous cat- alytic reforming of sorbitol. It was found that aromatics, ketones, furans, organic acids were main compounds in organic phase. The obvious effect of metal content showed that the highest carbon selectivity of aromatics was 34.36% when 3wt% Ni content was loaded on HZSM-5 zeolite modified by MCM-41. However, it was decreased only to 4.82% when Ni content was improved to 20wt%. Meanwhile, different reaction parameters also displayed important impacts on carbon selectivity. It was improved with the increase of temperature, while it was decreased as liquid hourly space velocity and hydrogen pressure was increased. The results showed that appropriate higher temperature, longer contact time and lower hy- drogen pressure were in favor of aromatics information, which suggested a feasible process to solve energy crisis.
基金Project(2018YFC1802204)supported by the National Key R&D Program of ChinaProject(51634010)supported by the Key Project of National Natural Science Foundation of ChinaProject(2018SK2026)supported by the Key R&D Program of Hunan Province,China。
文摘Magnetic Fe3 O4@Cu/Ce microspheres were successfully prepared by one-step solvothermal approach and further utilized to remediate toxic arsenic(As(Ⅲ)) pollution. The effects of Cu/Ce elements co-doping on the crystal structure, catalytic oxidation and adsorption behaviors of magnetic microspheres were researched systematically. The results showed that with the aid of Cu/Ce elements, the grain size reduced, lattice defects increased, and the oxygen vacancies and surface hydroxyl groups were improved. Therefore, Cu/Ce elements endowed magnetic Fe3 O4@Cu/Ce microspheres with excellent As(III) removal performance, whose maximum adsorption capacity reached 139.19 mg/g. The adsorption mechanism mainly involved catalytic oxidant co-adsorption. This research developed a feasible strategy for the preparation of high efficiency magnetic adsorbent to enhance the removal of As(Ⅲ).
基金Supported by the Natural Science Foundation of Zhejiang Province (Y405496) the State Key Development Program for Basic Research of China (2007CB216409)
文摘Borohydrides present interesting options for the electrochemical power generation acting either as hydrogen source or anodic fuel for direct borohydride fuel cells(DBFC).In this work,Mg-Ni composite synthesized by mechanically alloying method,used as the catalyst for the hydrolysis of borohydride,has been investigated.Co-doping treatment has been carried out for the purpose of improving the hydrolysis rate further.The as-prepared and Co-doped Mg-Ni composites with low cost showed high catalytic activity to the hydrolysis of borohydride for hydrogen generation.After Co-doping,the hydrogen generation rate was around 280 ml·g-1·min-1.Borohydride would be a promising hydrogen source for fuel cells.
基金Supported by the Sectoral Operational Programme Human Resources Development(SOP HRD)Financed from the European Social Fundthe Romanian Government under the Contract Number POSDRU/89/1.5/S/63700
文摘The functional materials based on natural zeolite (clinoptilolite), TiO2-zeolite and Ag-TiO2-zeolite have been successfully synthesized by solid-state reaction in fast-hydrothermal conditions. The obtained functional materials were investigated by X-ray diffraction (XRD), FT-1R (Fourier transform infrared) spectroscopy, DRUV-VIS (diffuse reflectance ultraviolet-visible) spectroscopy, BET (Brunauer-Emmett-Teller) and SEM/EDX (scanning electron microscope/energy dispersive X-ray spectrometer) analyses. The XRD results indicated that the clinoptilolite structure has a good thermal stabilization after the fast-hydrothermal treatment. Also, the high specific surface area about 92.55 m^2.g^-1 was noticed for Ag-TiO2-zeolite functional material. The presence of dopants was evidenced from EDX spectra. The enhanced bactericidal activity of Ag-TiO2-zeolite catalyst is proved through damaging of Enterococcusfaecalis colonies under visible irradiation, at different material doses and irradiation times.
文摘(PEO)8LiClO4-SiO2 composite polymer electrolytes(CPEs)were prepared by in-situ reaction,in which ethyl-orthosilicate(TEOS)was catalyzed by HCl and NH3.H2O,respectively.The ionic conductivity,the contact angle and the morphology of inorganic particles in the CPEs were investigated by AC impedance spectra,contact angle method and TEM.The conductivities of acid-catalyzed CPE and alkali-catalyzed CPE are 2.2×10-5and 1.1×10-5S/cm respectively at 30℃.The results imply that the catalyst plays an important role in the structure of in-situ preparation of SiO2,and influences the surface energy and conductivity of CPE films directly.Meanwhile,the ionic conductivity is related to the surface energy.
基金provided by the National Natural Science Foundation of China(No.21371055)the Hunan provincial Natural Science Foundation of China(No.11JJ2008)the Hunan provincial Colleges and Universities Innovation Platform Open Fund Project(No.15K049)
文摘Novel composite material with a wide pore distribution was synthesized by an in situ technique using spent FCC catalyst as raw material. The characterization results indicated that the composite material contained 56.7% of zeolite Y and exhibited a much larger specific surface area and pore volume as well as strong hydrothermal stability. Fluid catalytic cracking(FCC) catalyst was prepared based on the composite material. The results indicated that the as-prepared catalyst possessed a unique pore structure that was advantageous to the diffusion-controlled reactions. In addition, the attrition resistance, activity and hydrothermal stability of the studied catalyst were superior to those of the reference catalyst. The catalyst also exhibited excellent nickel and vanadium passivation performance, strong bottoms upgrading selectivity, and better gasoline and coke selectivity. In comparison to the reference catalyst, the yields of the gasoline and light oil increased by 1.61 and 1.31 percentage points, respectively, and the coke yield decreased by 0.22 percentage points, and the olefin content in the produced gasoline reduced by 2.51 percentage points, with the research octane number increased by 0.7 unit.
基金funded by the National Natural Science Foundation of China(31570569)
文摘Cellulose nanocrystal(CNC)prepared by hydrolysis of cotton linters with sulfuric acid was used to react with chloroauric acid to manufacture a gold nanoparticle/CNC composite.The composite was then graft-copolymerized with N-isopropylacrylamide to obtain a photo-thermal ultrafine gold nanoparticles/CNC-based hydrogel.The hydrogel was studied by performing scanning electron microscopy,and it was found that the prepared hydrogel had a network structure.The temperature of the hydrogel increased from 25℃to 39℃and its volume decreased by 30%when it was exposed to visible light(400~750 nm)for 1 h.The experiment results indicated that the prepared photo-thermal CNC-based hydrogel has thermal responsiveness and photo-thermal properties.
文摘Nd2O3 was used to support Al2O3 and ZnO to prepare a supported solid base catalyst and investigate the effect of catalyst and reaction conditions on the synthesis of tert-butyl acetate. The composited oxide of Nd2O3/Al2O3-Nd2O3/ZnO exhibited excellent catalytic activity for the synthsis of tert-butyl acetate. The molar ratio of tert-butanol to acetic anhydride is 3∶1, the catalyst in total amount of reactant nearly 0.5%, and reaction time 6 h. With the above conditions, yield of the reaction could reach to 65%. The structure of product were verified by the FT-IR, Element analysis, and MS, which proved that the product was tert-butyl acetate.
基金financially supported by the National Natural Science Foundation of China (Nos.21473153 and 51771162)Support Program for the Top Young Talents of Hebei Province,China Postdoctoral Science Foundation (No.2015M580214)+1 种基金the Scientific and Technological Research and Development Program of Qinhuangdao City (No.201701B004)Undergraduate Training Programs for Innovation and Entrepreneurship of Yanshan University (No.CXXL2017227)
文摘MXene is a new type of layered two-dimensional transition metal carbide materials differing from graphene, demonstrating intriguing chemical/physical properties. Here the chemical modification of MXene and next fabrication of core-shell MXene-COOH@(PEI/PAA)_n composites have been investigated. The obtained MXene-based composites were treated with gold nanoparticles to form MXene—COOH@(PEI/PAA)_n@AuNPs nanocomposites, and their catalytic properties for nitro-compounds were studied. The prepared nanocomposites demonstrated good catalytic activity and reproducibility, showing potential applications in composite catalysts and environmental fields.