We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fab...We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fabricated using a 5.6-cm-long anti-resonant hollow-core fiber with pure acetylene filling.It has a half-wave optical power of 289 mW at 100 kHz and an average insertion loss 0.6 dB over a broad wavelength range from 1450 to 1650 nm.The rise and fall time constants are 3.5 and 3.7μs,respectively,2–3 orders of magnitude better than the previously reported microfiber-based photo-thermal phase modulators.The gas-filled hollow-core waveguide configuration is promising for optical phase modulation from ultraviolet to mid-infrared which is challenging to achieve with solid optical fibers.展开更多
Photocatalytic water splitting on noble metal-free photocatalysts for H_(2) generation is a promising but challenging approach to realize solar-to-chemical energy conversion.In this study,Mo/Mo_(2)C nanoparticles anch...Photocatalytic water splitting on noble metal-free photocatalysts for H_(2) generation is a promising but challenging approach to realize solar-to-chemical energy conversion.In this study,Mo/Mo_(2)C nanoparticles anchored carbon layer(Mo/Mo_(2)C@C)was obtained by a one-step in-situ phase transition approach and developed for the first time as a photothermal cocatalyst to enhance the activity of ZnIn_(2)S_(4)photocatalyst.Mo/Mo_(2)C@C nanosheet exhibits strong absorption in the full spectrum region and excellent photo-thermal conversion ability,which generates heat to improve the reaction temperature and accelerate the reaction kinetics.Moreover,metallic Mo/Mo_(2)C@C couples with ZnIn_(2)S_(4)to form ZnIn_(2)S_(4)-Mo/Mo_(2)C@C Schottky junction(denoted as ZMM),which prevents the electrons back transfer and restrains the charge recombination.In addition,conductive carbon with strong interfacial interaction serves as a fast charge transport bridge.Consequently,the optimized ZMM-0.2 junction exhibits an H2 evolution rate of 1031.07μmol g^(-1)h^-(1),which is 41 and 4.3 times higher than bare ZnIn_(2)S_(4)and ZnIn_(2)S_(4)-Mo2C,respectively.By designing novel photothermal cocatalysts,our work will provide a new guidance for designing efficient photocatalysts.展开更多
Plasma sterilization is a new generation of high-tech sterilization method that is fast,safe,and pollution free.It is widely used in medical,food,and environmental protection fields.Home air sterilization is an emergi...Plasma sterilization is a new generation of high-tech sterilization method that is fast,safe,and pollution free.It is widely used in medical,food,and environmental protection fields.Home air sterilization is an emerging field of plasma application,which puts higher requirements on the miniaturization,operational stability,and operating cost of plasma device.In this study,a novel magnetically driven rotating gliding arc(MDRGA)discharge device was used to sterilize Lactobacillus fermentation.Compared with the traditional gas-driven gliding arc,this device has a simple structure and a more stable gliding arc.Simulation using COMSOL Multiphysics showed that adding permanent magnets can form a stable magnetic field,which is conducive to the formation of gliding arcs.Experiments on the discharge performance,ozone concentration,and sterilization effect were conducted using different power supply parameters.The results revealed that the MDRGA process can be divided into three stages:starting,gliding,and extinguishing.Appropriate voltage was the key factor for stable arc gliding,and both high and low voltages were not conducive to stable arc gliding and ozone production.In this experimental setup,the sterilization effect was the best at 6.6 kV.A high modulation duty ratio was beneficial for achieving stable arc gliding.However,when the duty ratio exceeded a certain value,the improvement in the sterilization effect was slow.Therefore,considering the sterilization effect and energy factors comprehensively,we chose 80%as the optimal modulation duty ratio for this experimental device.展开更多
Brain tissue is one of the softest parts of the human body,composed of white matter and grey matter.The mechanical behavior of the brain tissue plays an essential role in regulating brain morphology and brain function...Brain tissue is one of the softest parts of the human body,composed of white matter and grey matter.The mechanical behavior of the brain tissue plays an essential role in regulating brain morphology and brain function.Besides,traumatic brain injury(TBI)and various brain diseases are also greatly influenced by the brain's mechanical properties.Whether white matter or grey matter,brain tissue contains multiscale structures composed of neurons,glial cells,fibers,blood vessels,etc.,each with different mechanical properties.As such,brain tissue exhibits complex mechanical behavior,usually with strong nonlinearity,heterogeneity,and directional dependence.Building a constitutive law for multiscale brain tissue using traditional function-based approaches can be very challenging.Instead,this paper proposes a data-driven approach to establish the desired mechanical model of brain tissue.We focus on blood vessels with internal pressure embedded in a white or grey matter matrix material to demonstrate our approach.The matrix is described by an isotropic or anisotropic nonlinear elastic model.A representative unit cell(RUC)with blood vessels is built,which is used to generate the stress-strain data under different internal blood pressure and various proportional displacement loading paths.The generated stress-strain data is then used to train a mechanical law using artificial neural networks to predict the macroscopic mechanical response of brain tissue under different internal pressures.Finally,the trained material model is implemented into finite element software to predict the mechanical behavior of a whole brain under intracranial pressure and distributed body forces.Compared with a direct numerical simulation that employs a reference material model,our proposed approach greatly reduces the computational cost and improves modeling efficiency.The predictions made by our trained model demonstrate sufficient accuracy.Specifically,we find that the level of internal blood pressure can greatly influence stress distribution and determine the possible related damage behaviors.展开更多
Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is ...Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is used with this model to obtain the modified Rutherford equation with co-current and counter-current contributions.Consistent with the reported experimental results,numerical simulations have shown that the localized counter external current can only partially suppress NTM when it is far from the resonant magnetic surface.Under some circumstances,the Ohkawa mechanism dominated current drive(OKCD)by electron cyclotron waves can concurrently create both co-current and counter-current.In this instance,the minimal electron cyclotron wave power that suppresses a particular NTM was calculated by the Rutherford equation.The result is marginally less than when taking co-current alone into consideration.As a result,to suppress NTM using OKCD,one only needs to align the co-current with a greater OKCD peak well with the resonant magnetic surface.The effect of its lower counter-current does not need to be considered because the location of the counter-current deviates greatly from the resonant magnetic surface.展开更多
Laser driven flyer plate technology offers improved safety and reliability for detonation of explosives in industrial applications ranging from mining and stone quarrying to the aerospace and defense industries.This s...Laser driven flyer plate technology offers improved safety and reliability for detonation of explosives in industrial applications ranging from mining and stone quarrying to the aerospace and defense industries.This study is based on developing a safer laser driven flyer plate prototype comprised of a laser initiator and a flyer plate subsystem that can be used with secondary explosives.System parameters were optimized to initiate the shock-to-detonation transition(SDT)of a secondary explosive based on the impact created by the flyer plate on the explosive surface.Rupture of the flyer was investigated at the mechanically weakened region located on the interface of these subsystems,where the product gases from the deflagration of the explosive provide the required energy.A bilayer energetic material was used,where the first layer consisted of a pyrotechnic component,zirconium potassium perchlorate(ZPP),for sustaining the ignition by the laser beam and the second layer consisted of an insensitive explosive,cyclotetramethylene-tetranitramine(HMX),for deflagration.A plexiglass interface was used to enfold the energetic material.The focal length of the laser beam from the diode was optimized to provide a homogeneous beam profile with maximum power at the surface of the ZPP.Closed bomb experiments were conducted in an internal volume of 10 cm^(3) for evaluation of performance.Dependency of the laser driven flyer plate system output on confinement,explosive density,and laser beam power were analyzed.Measurements using a high-speed camera resulted in a flyer velocity of 670±20 m/s that renders the prototype suitable as a laser detonator in applications,where controlled employment of explosives is critical.展开更多
With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests...With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests from both the industrial and academic communities.Input shaping(IS),as a simple and effective feedforward method,is greatly demanded in DDVC methods.It convolves the desired input command with impulse sequence without requiring parametric dynamics and the closed-loop system structure,thereby suppressing the residual vibration separately.Based on a thorough investigation into the state-of-the-art DDVC methods,this survey has made the following efforts:1)Introducing the IS theory and typical input shapers;2)Categorizing recent progress of DDVC methods;3)Summarizing commonly adopted metrics for DDVC;and 4)Discussing the engineering applications and future trends of DDVC.By doing so,this study provides a systematic and comprehensive overview of existing DDVC methods from designing to optimizing perspectives,aiming at promoting future research regarding this emerging and vital issue.展开更多
Soybean(Glycine max(L.) Merr.) is a typical short-day and warm season plant, and the interval between emergence and flowering has long been known to be regulated by environmental factors, primarily photoperiod and...Soybean(Glycine max(L.) Merr.) is a typical short-day and warm season plant, and the interval between emergence and flowering has long been known to be regulated by environmental factors, primarily photoperiod and temperature. While the effects of photoperiod and temperature on soybean flowering have been extensively studied, a dissection of the component photo-thermal effects has not been documented for Chinese germplasm. Our objective of the current study was to evaluate the independent- and interactive-photo-thermal responses of 71 cultivars from 6 ecotypes spanning the soybean production regions in China. These cultivars were subjected in pot experiments to different temperature regimes by planting in spring(low temperature(LT)) and summer(high temperature(HT)), and integrating with short day(SD, 12 h), natural day(ND, variable day-length), and long day(LD, 16 h) treatments over two years. The duration of the vegetative phase from emergence to first bloom(R1) was recorded, and the photo-thermal response was calculated. The outcome of this characterization led to the following conclusions:(1) There were significant differences in photo-thermal response among the different ecotypes. High-latitude ecotypes were less sensitive to the independent- and interactive-photo-thermal effects than low-latitude ecotypes; and(2) there was an interaction between photoperiod and temperature, with the effect of photoperiod on thermal sensitivity being greater under the LD than the SD condition, and with the effect of temperature on photoperiodic sensitivity being greater under the LT than the HT condition. The strengths and limitations of this study are discussed in terms of implications for current knowledge and future research directions. The study provides better understanding of photo-thermal effects on flowering in soybean genotypes from different ecotypes throughout China and of the implications for their adaptation more broadly.展开更多
The conversion of carbon dioxide into value-added products is of great industrial and environmental interest. However, as carbon dioxide is relatively stable, the input energy required for this conversion is a signifi...The conversion of carbon dioxide into value-added products is of great industrial and environmental interest. However, as carbon dioxide is relatively stable, the input energy required for this conversion is a significant limiting factor in the system's performance. By utilising energy from the sun, through a range of key routes, this limitation can be overcome. In this review, we present a comprehensive and critical overview of the potential routes to harvest the sun's energy, primarily through solar-thermal technologies and plasmonic resonance effects. Focusing on the localised heating approach, this review shortlists and compares viable catalysts for the photo-thermal catalytic conversion of carbon dioxide.Further, the pathways and potential products of different carbon dioxide conversion routes are outlined with the reverse water gas shift,methanation, and methanol synthesis being of key interest. Finally, the challenges in implementing such systems and the outlook to the future are detailed.展开更多
As a short-day(SD)and thermophilic plant,soybean(Glycine max(L.)Merr.)is sensitive to photo-thermal conditions.This characteristic severely limits the cultivation range of a given soybean cultivar and affects the perf...As a short-day(SD)and thermophilic plant,soybean(Glycine max(L.)Merr.)is sensitive to photo-thermal conditions.This characteristic severely limits the cultivation range of a given soybean cultivar and affects the performances of agronomic traits such as yield,plant architectures,and seed quality.Therefore,understanding the mechanism of photo-thermal sensitivity will provide a theoretical basis for soybean improvement.In this review,we introduce the advances in physiological,genetic,and molecular researches in photoperiodism of soybean,and progress in the improvement of the photo-thermal adaptability.We also summarize the photo-thermal conditions and characteristics of widely-planted soybean cultivars of major production regions in China.Furthermore,we proposed a novel concept of‘ecotyping’and the strategies for widely-adapted soybean cultivar breeding.This review provides an important guide for improving the adaptability of soybean.展开更多
Cellulose nanocrystal(CNC)prepared by hydrolysis of cotton linters with sulfuric acid was used to react with chloroauric acid to manufacture a gold nanoparticle/CNC composite.The composite was then graft-copolymerized...Cellulose nanocrystal(CNC)prepared by hydrolysis of cotton linters with sulfuric acid was used to react with chloroauric acid to manufacture a gold nanoparticle/CNC composite.The composite was then graft-copolymerized with N-isopropylacrylamide to obtain a photo-thermal ultrafine gold nanoparticles/CNC-based hydrogel.The hydrogel was studied by performing scanning electron microscopy,and it was found that the prepared hydrogel had a network structure.The temperature of the hydrogel increased from 25℃to 39℃and its volume decreased by 30%when it was exposed to visible light(400~750 nm)for 1 h.The experiment results indicated that the prepared photo-thermal CNC-based hydrogel has thermal responsiveness and photo-thermal properties.展开更多
Designing and manufacturing cost-effective absorbers that can cover the full-spectrum of solar irradiation is still critically important for solar harvesting.Utilizing control of the lightwave reflection and transmiss...Designing and manufacturing cost-effective absorbers that can cover the full-spectrum of solar irradiation is still critically important for solar harvesting.Utilizing control of the lightwave reflection and transmission,metamaterials realize high absorption over a relatively wide bandwidth.Here,a truncated circular cone metasurface(TCCM)composed of alternating multiple layers of titanium(Ti)and silicon dioxide(SiO_(2))is presented.Enabled by the synergetic of surface plasmon resonances and Fabry-Pérot resonances,the TCCM simultaneously achieves high absorptivity(exceed 90%),and absorption broadband covers almost the entire solar irradiation spectrum.In addition,the novel absorber exhibits great photo-thermal property.By exploiting the ultrahigh melting point of Ti and SiO_(2),high-efficiency solar irradiation absorption and heat release have been achieved at 700℃when the solar concentration ratio is 500(i.e.,incident light intensity at 5×10^(5) W/m^(2)).It is worth noting that the photo-thermal efficiency is almost unchanged when the incident angle increases from 0°to 45°.The outstanding capacity for solar harvesting and light-to-heat reported in this paper suggests that TCCM has great potential in photothermal therapies,solar desalination,and radiative cooling,etc.展开更多
The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly d...The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly distributing torques to minimize the power consumption,the driving range of 4WID-EV can be effectively improved.This paper proposes a model predictive control(MPC)-based torque distribution scheme,which minimizes the power consumption of 4WID-EVs while guaranteeing its tracking performance of planar motions.By incorporating the motor model considering iron losses,the optimal torque distribution can be achieved without an additional torque controller.Also,for this reason,the proposed control scheme is computationally efficient,since the power consumption term to be optimized,which is expressed as the product of the motor voltages and currents,is much simpler than that derived from the efficiency map.With reasonable simplification and linearization,the MPC problem is converted to a quadratic programming problem,which can be solved efficiently.The simulation results in MATLAB and CarSim co-simulation environments demonstrate that the proposed scheme effectively reduces power consumption with guaranteed tracking performance.展开更多
Oxygen vacancy(Vo)is a significant component in defect engineering.The present work reports the anchoring effects of initial Vo for further loading modifications and the reducing capacity of photoinduced Vo for pure w...Oxygen vacancy(Vo)is a significant component in defect engineering.The present work reports the anchoring effects of initial Vo for further loading modifications and the reducing capacity of photoinduced Vo for pure water splitting.Herein,we propose Ni-loaded Cu-doped TiO_(2)(NCT)materials by successive doping and loading.The continuously added Ni ions should accumulate around the Vos and gradually grow into complete nickel oxide crystals,achieving a higher average valence state of the Ni species.NiO crystals can be detected on a 0.5%NCT sample,while the structure of Ni_(2)O_(3) has been confirmed with a higher nickel mass ratio.Moreover,the introduction of nickel oxide effectively improves the photochemical and electrochemical performance by the interface charge separation,finally reaching an H2 yield of 30.6 pmol/g-cat on 0.5%NCT for Vo-based photo-thermal coupling reaction,which consists of Vo generation in photo and Vo consumption in thermal environment.In situ infrared spectroscopy further indicated that the presence of high valence state nickel oxide hindered the H2 formation but effectively promoted the conventional oxidizing reaction,with an H2 yield of 20.6 mmol/g-cat in a methanol-water reaction on the 2.0%NCT material.In summary,Vo controls the morphological structure of Ni loading and produces diverse effects for reactions with dissimilar mechanisms,which provides a novel way to design modifications for promoting various chemical reactions.展开更多
Pancreatic cancer(PanCa)presents a catastrophic disease with poor overall survival at advanced stages,with immediate requirement of new and effective treatment options.Besides genetic mutations,epigenetic dysregulatio...Pancreatic cancer(PanCa)presents a catastrophic disease with poor overall survival at advanced stages,with immediate requirement of new and effective treatment options.Besides genetic mutations,epigenetic dysregulation of signaling pathway-associated enriched genes are considered as novel therapeutic target.Mechanisms beneath the deoxyribonucleic acid methylation and its utility in developing of epi-drugs in PanCa are under trails.Combinations of epigenetic medicines with conventional cytotoxic treatments or targeted therapy are promising options to improving the dismal response and survival rate of PanCa patients.Recent studies have identified potentially valid pathways that support the prediction that future PanCa clinical trials will include vigorous testing of epigenomic therapies.Epigenetics thus promises to generate a significant amount of new knowledge of biological and medical importance.Our review could identify various components of epigenetic mechanisms known to be involved in the initiation and development of pancreatic ductal adenocarcinoma and related precancerous lesions,and novel pharmacological strategies that target these components could potentially lead to breakthroughs.We aim to highlight the possibilities that exist and the potential therapeutic interventions.展开更多
The electrically driven large-load-ratio six-legged robot with engineering capability can be widely used in outdoor and planetary exploration.However,due to the particularity of its parallel structure,the effective ut...The electrically driven large-load-ratio six-legged robot with engineering capability can be widely used in outdoor and planetary exploration.However,due to the particularity of its parallel structure,the effective utilization rate of energy is not high,which has become an important obstacle to its practical application.To research the power consumption characteristics of robot mobile system is beneficial to speed up it toward practicability.Based on the configuration and walking modes of robot,the mathematical model of the power consumption of mobile system is set up.In view of the tripod gait is often selected for the six-legged robots,the simplified power consumption model of mobile system under the tripod gait is established by means of reducing the dimension of the robot’s statically indeterminate problem and constructing the equal force distribution.Then,the power consumption of robot mobile system is solved under different working conditions.The variable tendencies of the power consumption of robot mobile system are respectively obtained with changes in the rotational angles of hip joint and knee joint,body height,and span.The articulated rotational zones and the ranges of body height and span are determined under the lowest power consumption.According to the walking experiments of prototype,the variable tendencies of the average power consumption of robot mobile system are respectively acquired with changes in duty ratio,body height,and span.Then,the feasibility and correctness of theory analysis are verified in the power consumption of robot mobile system.The proposed analysis method in this paper can provide a reference on the lower power research of the large-load-ratio multi-legged robots.展开更多
The hybrid beamforming is a promising technology for the millimeter wave MIMO system,which provides high spectrum efficiency,high data rate transmission,and a good balance between transmission performance and hardware...The hybrid beamforming is a promising technology for the millimeter wave MIMO system,which provides high spectrum efficiency,high data rate transmission,and a good balance between transmission performance and hardware complexity.The most existing beamforming systems transmit multiple streams by formulating multiple orthogonal beams.However,the Neural network Hybrid Beamforming(NHB)adopts a totally different strategy,which combines multiple streams into one and transmits by employing a high-order non-orthogonal modulation strategy.Driven by the Deep Learning(DL)hybrid beamforming,in this work,we propose a DL-driven nonorthogonal hybrid beamforming for the single-user multiple streams scenario.We first analyze the beamforming strategy of NHB and prove it with better Bit Error Rate(BER)performance than the orthogonal hybrid beamforming even with the optimal power allocation.Inspired by the NHB,we propose a new DL-driven beamforming scheme to simulate the NHB behavior,which avoids time-consuming neural network training and achieves better BERs than traditional hybrid beamforming.Moreover,our simulation results demonstrate that the DL-driven nonorthogonal beamforming outperforms its traditional orthogonal beamforming counterpart in the presence of subconnected schemes and imperfect Channel State Information(CSI).展开更多
While the Yagi-Uda array has been studied for decades, one issue appears to have received less attention than perhaps it should, namely, the effects on performance of the array’s driven element length and its length-...While the Yagi-Uda array has been studied for decades, one issue appears to have received less attention than perhaps it should, namely, the effects on performance of the array’s driven element length and its length-to-diameter ratio. This paper looks at that question. It shows that decreasing the L/D ratio increases impedance bandwidth, but it may shift the IBW band sufficiently far from the design frequency that other parameters such as gain and front-to-back ratio probably are adversely affected. It also shows that array performance is not relatively independent of element diameters. This paper also investigates the effect of lengthening the driven element, which can substantially improve IBW. Several iterations of a 3-element prototype and improved arrays are modeled with the Method of Moments and discussed in detail. A five step design procedure is recommended and applied to a Genetic Algorithm-optimized 3-element Yagi at 146 MHz. This array exhibits excellent performance in terms of gain, front-to-back ratio, and especially impedance bandwidth (nearly 14% for voltage standing wave ratio ≤ 2:1 with two frequencies at which 50 ? is almost perfectly matched). While the analysis and recommended design steps are applied to cylindrical array elements, which commonly are aluminum tubing for stand-alone VHF-SHF Yagis, they can be applied to other element geometries as well using equivalent cylindrical radii, for example, Printed Circuit Board traces for planar arrays. One consequence of lengthening the driven element while reducing its L/D ratio is that some reactance is introduced at the array feedpoint which must be tuned out, and two approaches for doing so are suggested.展开更多
The implosion plasma drive fusion pellet of inertial confinement is a concept related to nuclear fusion,a process in which atomic nuclei combine to form heavier nuclei,releasing a large amount of energy in the process...The implosion plasma drive fusion pellet of inertial confinement is a concept related to nuclear fusion,a process in which atomic nuclei combine to form heavier nuclei,releasing a large amount of energy in the process.The implosion plasma drive fusion pellet is a potential fuel source for achieving controlled nuclear fusion.ICF(inertial confinement fusion)is a technique used to achieve fusion by compressing a small target containing fusion fuel to extremely high densities and temperatures using lasers or other methods.The implosion plasma drive fusion pellet concept involves using a small pellet of deuterium and tritium(two isotopes of hydrogen)as fusion fuel,and then rapidly heating and compressing it using a pulsed power system.The implosion process creates a high-pressure plasma that ignites the fusion reactions,releasing energy in the form of neutrons and charged particles.The resulting energy can be captured and used for power generation.This technology is still in the experimental stage,and significant research and development is required to make it commercially viable.However,it has the potential to provide a virtually limitless source of clean energy with no greenhouse gas emissions or long-term radioactive waste.Be that as it may,ICF has to get exact control of the implosion process,mitigate insecurities,and create modern materials and advances to resist the extraordinary conditions of the combined response.展开更多
基金We are grateful for financial supports from the National Key Research and Development Program of China(2019YFB2203904)the National Natural Science Foundation of China(U21A20506,62105122,61827820,62005233)+1 种基金the Shenzhen STIC Funding(RCBS20200714114819032)the Local Innovative and Research Teams Project of Guangdong Pear River Talents Program(2019BT02X105).
文摘We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fabricated using a 5.6-cm-long anti-resonant hollow-core fiber with pure acetylene filling.It has a half-wave optical power of 289 mW at 100 kHz and an average insertion loss 0.6 dB over a broad wavelength range from 1450 to 1650 nm.The rise and fall time constants are 3.5 and 3.7μs,respectively,2–3 orders of magnitude better than the previously reported microfiber-based photo-thermal phase modulators.The gas-filled hollow-core waveguide configuration is promising for optical phase modulation from ultraviolet to mid-infrared which is challenging to achieve with solid optical fibers.
基金supported by National Natural Science Foundation of China(Nos.21971143 and 21805165)the Hubei Provincial Department of Education(D20201207)and 111 Project(D20015).
文摘Photocatalytic water splitting on noble metal-free photocatalysts for H_(2) generation is a promising but challenging approach to realize solar-to-chemical energy conversion.In this study,Mo/Mo_(2)C nanoparticles anchored carbon layer(Mo/Mo_(2)C@C)was obtained by a one-step in-situ phase transition approach and developed for the first time as a photothermal cocatalyst to enhance the activity of ZnIn_(2)S_(4)photocatalyst.Mo/Mo_(2)C@C nanosheet exhibits strong absorption in the full spectrum region and excellent photo-thermal conversion ability,which generates heat to improve the reaction temperature and accelerate the reaction kinetics.Moreover,metallic Mo/Mo_(2)C@C couples with ZnIn_(2)S_(4)to form ZnIn_(2)S_(4)-Mo/Mo_(2)C@C Schottky junction(denoted as ZMM),which prevents the electrons back transfer and restrains the charge recombination.In addition,conductive carbon with strong interfacial interaction serves as a fast charge transport bridge.Consequently,the optimized ZMM-0.2 junction exhibits an H2 evolution rate of 1031.07μmol g^(-1)h^-(1),which is 41 and 4.3 times higher than bare ZnIn_(2)S_(4)and ZnIn_(2)S_(4)-Mo2C,respectively.By designing novel photothermal cocatalysts,our work will provide a new guidance for designing efficient photocatalysts.
基金supported by National Natural Science Foundation of China(Nos.52077129 and 52277150)the Natural Science Foundation of Shandong Province(No.ZR2022ME037).
文摘Plasma sterilization is a new generation of high-tech sterilization method that is fast,safe,and pollution free.It is widely used in medical,food,and environmental protection fields.Home air sterilization is an emerging field of plasma application,which puts higher requirements on the miniaturization,operational stability,and operating cost of plasma device.In this study,a novel magnetically driven rotating gliding arc(MDRGA)discharge device was used to sterilize Lactobacillus fermentation.Compared with the traditional gas-driven gliding arc,this device has a simple structure and a more stable gliding arc.Simulation using COMSOL Multiphysics showed that adding permanent magnets can form a stable magnetic field,which is conducive to the formation of gliding arcs.Experiments on the discharge performance,ozone concentration,and sterilization effect were conducted using different power supply parameters.The results revealed that the MDRGA process can be divided into three stages:starting,gliding,and extinguishing.Appropriate voltage was the key factor for stable arc gliding,and both high and low voltages were not conducive to stable arc gliding and ozone production.In this experimental setup,the sterilization effect was the best at 6.6 kV.A high modulation duty ratio was beneficial for achieving stable arc gliding.However,when the duty ratio exceeded a certain value,the improvement in the sterilization effect was slow.Therefore,considering the sterilization effect and energy factors comprehensively,we chose 80%as the optimal modulation duty ratio for this experimental device.
文摘Brain tissue is one of the softest parts of the human body,composed of white matter and grey matter.The mechanical behavior of the brain tissue plays an essential role in regulating brain morphology and brain function.Besides,traumatic brain injury(TBI)and various brain diseases are also greatly influenced by the brain's mechanical properties.Whether white matter or grey matter,brain tissue contains multiscale structures composed of neurons,glial cells,fibers,blood vessels,etc.,each with different mechanical properties.As such,brain tissue exhibits complex mechanical behavior,usually with strong nonlinearity,heterogeneity,and directional dependence.Building a constitutive law for multiscale brain tissue using traditional function-based approaches can be very challenging.Instead,this paper proposes a data-driven approach to establish the desired mechanical model of brain tissue.We focus on blood vessels with internal pressure embedded in a white or grey matter matrix material to demonstrate our approach.The matrix is described by an isotropic or anisotropic nonlinear elastic model.A representative unit cell(RUC)with blood vessels is built,which is used to generate the stress-strain data under different internal blood pressure and various proportional displacement loading paths.The generated stress-strain data is then used to train a mechanical law using artificial neural networks to predict the macroscopic mechanical response of brain tissue under different internal pressures.Finally,the trained material model is implemented into finite element software to predict the mechanical behavior of a whole brain under intracranial pressure and distributed body forces.Compared with a direct numerical simulation that employs a reference material model,our proposed approach greatly reduces the computational cost and improves modeling efficiency.The predictions made by our trained model demonstrate sufficient accuracy.Specifically,we find that the level of internal blood pressure can greatly influence stress distribution and determine the possible related damage behaviors.
基金Project supported by the National Key R&D Program of China(Grant Nos.2022YFE03070000 and 2022YFE03070003)the National Natural Science Foundation of China(Grant Nos.12375220 and 12075114)+3 种基金the Hunan Provincial Natural Science Foundation(Grant No.2021JJ30569)the Doctoral Initiation Fund Project of University of South China(Grant No.190XQD114)the Hunan Nuclear Fusion International Science and Technology Innovation Cooperation Base(Grant No.2018WK4009)the Hengyang Key Laboratory of Magnetic Confinement Nuclear Fusion Research(Grant No.2018KJ108)。
文摘Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is used with this model to obtain the modified Rutherford equation with co-current and counter-current contributions.Consistent with the reported experimental results,numerical simulations have shown that the localized counter external current can only partially suppress NTM when it is far from the resonant magnetic surface.Under some circumstances,the Ohkawa mechanism dominated current drive(OKCD)by electron cyclotron waves can concurrently create both co-current and counter-current.In this instance,the minimal electron cyclotron wave power that suppresses a particular NTM was calculated by the Rutherford equation.The result is marginally less than when taking co-current alone into consideration.As a result,to suppress NTM using OKCD,one only needs to align the co-current with a greater OKCD peak well with the resonant magnetic surface.The effect of its lower counter-current does not need to be considered because the location of the counter-current deviates greatly from the resonant magnetic surface.
文摘Laser driven flyer plate technology offers improved safety and reliability for detonation of explosives in industrial applications ranging from mining and stone quarrying to the aerospace and defense industries.This study is based on developing a safer laser driven flyer plate prototype comprised of a laser initiator and a flyer plate subsystem that can be used with secondary explosives.System parameters were optimized to initiate the shock-to-detonation transition(SDT)of a secondary explosive based on the impact created by the flyer plate on the explosive surface.Rupture of the flyer was investigated at the mechanically weakened region located on the interface of these subsystems,where the product gases from the deflagration of the explosive provide the required energy.A bilayer energetic material was used,where the first layer consisted of a pyrotechnic component,zirconium potassium perchlorate(ZPP),for sustaining the ignition by the laser beam and the second layer consisted of an insensitive explosive,cyclotetramethylene-tetranitramine(HMX),for deflagration.A plexiglass interface was used to enfold the energetic material.The focal length of the laser beam from the diode was optimized to provide a homogeneous beam profile with maximum power at the surface of the ZPP.Closed bomb experiments were conducted in an internal volume of 10 cm^(3) for evaluation of performance.Dependency of the laser driven flyer plate system output on confinement,explosive density,and laser beam power were analyzed.Measurements using a high-speed camera resulted in a flyer velocity of 670±20 m/s that renders the prototype suitable as a laser detonator in applications,where controlled employment of explosives is critical.
基金supported by the National Natural Science Foundation of China (62272078)。
文摘With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests from both the industrial and academic communities.Input shaping(IS),as a simple and effective feedforward method,is greatly demanded in DDVC methods.It convolves the desired input command with impulse sequence without requiring parametric dynamics and the closed-loop system structure,thereby suppressing the residual vibration separately.Based on a thorough investigation into the state-of-the-art DDVC methods,this survey has made the following efforts:1)Introducing the IS theory and typical input shapers;2)Categorizing recent progress of DDVC methods;3)Summarizing commonly adopted metrics for DDVC;and 4)Discussing the engineering applications and future trends of DDVC.By doing so,this study provides a systematic and comprehensive overview of existing DDVC methods from designing to optimizing perspectives,aiming at promoting future research regarding this emerging and vital issue.
基金funded by the China Agricultural Research System (CARS-04)the Chinese Academy of Agricultural Sciences Innovation Project
文摘Soybean(Glycine max(L.) Merr.) is a typical short-day and warm season plant, and the interval between emergence and flowering has long been known to be regulated by environmental factors, primarily photoperiod and temperature. While the effects of photoperiod and temperature on soybean flowering have been extensively studied, a dissection of the component photo-thermal effects has not been documented for Chinese germplasm. Our objective of the current study was to evaluate the independent- and interactive-photo-thermal responses of 71 cultivars from 6 ecotypes spanning the soybean production regions in China. These cultivars were subjected in pot experiments to different temperature regimes by planting in spring(low temperature(LT)) and summer(high temperature(HT)), and integrating with short day(SD, 12 h), natural day(ND, variable day-length), and long day(LD, 16 h) treatments over two years. The duration of the vegetative phase from emergence to first bloom(R1) was recorded, and the photo-thermal response was calculated. The outcome of this characterization led to the following conclusions:(1) There were significant differences in photo-thermal response among the different ecotypes. High-latitude ecotypes were less sensitive to the independent- and interactive-photo-thermal effects than low-latitude ecotypes; and(2) there was an interaction between photoperiod and temperature, with the effect of photoperiod on thermal sensitivity being greater under the LD than the SD condition, and with the effect of temperature on photoperiodic sensitivity being greater under the LT than the HT condition. The strengths and limitations of this study are discussed in terms of implications for current knowledge and future research directions. The study provides better understanding of photo-thermal effects on flowering in soybean genotypes from different ecotypes throughout China and of the implications for their adaptation more broadly.
文摘The conversion of carbon dioxide into value-added products is of great industrial and environmental interest. However, as carbon dioxide is relatively stable, the input energy required for this conversion is a significant limiting factor in the system's performance. By utilising energy from the sun, through a range of key routes, this limitation can be overcome. In this review, we present a comprehensive and critical overview of the potential routes to harvest the sun's energy, primarily through solar-thermal technologies and plasmonic resonance effects. Focusing on the localised heating approach, this review shortlists and compares viable catalysts for the photo-thermal catalytic conversion of carbon dioxide.Further, the pathways and potential products of different carbon dioxide conversion routes are outlined with the reverse water gas shift,methanation, and methanol synthesis being of key interest. Finally, the challenges in implementing such systems and the outlook to the future are detailed.
基金supported by the National Key R&D Program of China (2017YFD0101400)the earmarked fund for China Agriculture Research System (CARS-04)+1 种基金the National Natural Science Foundation of China (31601239)the Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences, China (CXGC2018E01)
文摘As a short-day(SD)and thermophilic plant,soybean(Glycine max(L.)Merr.)is sensitive to photo-thermal conditions.This characteristic severely limits the cultivation range of a given soybean cultivar and affects the performances of agronomic traits such as yield,plant architectures,and seed quality.Therefore,understanding the mechanism of photo-thermal sensitivity will provide a theoretical basis for soybean improvement.In this review,we introduce the advances in physiological,genetic,and molecular researches in photoperiodism of soybean,and progress in the improvement of the photo-thermal adaptability.We also summarize the photo-thermal conditions and characteristics of widely-planted soybean cultivars of major production regions in China.Furthermore,we proposed a novel concept of‘ecotyping’and the strategies for widely-adapted soybean cultivar breeding.This review provides an important guide for improving the adaptability of soybean.
基金funded by the National Natural Science Foundation of China(31570569)
文摘Cellulose nanocrystal(CNC)prepared by hydrolysis of cotton linters with sulfuric acid was used to react with chloroauric acid to manufacture a gold nanoparticle/CNC composite.The composite was then graft-copolymerized with N-isopropylacrylamide to obtain a photo-thermal ultrafine gold nanoparticles/CNC-based hydrogel.The hydrogel was studied by performing scanning electron microscopy,and it was found that the prepared hydrogel had a network structure.The temperature of the hydrogel increased from 25℃to 39℃and its volume decreased by 30%when it was exposed to visible light(400~750 nm)for 1 h.The experiment results indicated that the prepared photo-thermal CNC-based hydrogel has thermal responsiveness and photo-thermal properties.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11804134 and 11464019)the Natural Science Foundation of Jiangxi Province,China(Grant No.20202BBEL53036).
文摘Designing and manufacturing cost-effective absorbers that can cover the full-spectrum of solar irradiation is still critically important for solar harvesting.Utilizing control of the lightwave reflection and transmission,metamaterials realize high absorption over a relatively wide bandwidth.Here,a truncated circular cone metasurface(TCCM)composed of alternating multiple layers of titanium(Ti)and silicon dioxide(SiO_(2))is presented.Enabled by the synergetic of surface plasmon resonances and Fabry-Pérot resonances,the TCCM simultaneously achieves high absorptivity(exceed 90%),and absorption broadband covers almost the entire solar irradiation spectrum.In addition,the novel absorber exhibits great photo-thermal property.By exploiting the ultrahigh melting point of Ti and SiO_(2),high-efficiency solar irradiation absorption and heat release have been achieved at 700℃when the solar concentration ratio is 500(i.e.,incident light intensity at 5×10^(5) W/m^(2)).It is worth noting that the photo-thermal efficiency is almost unchanged when the incident angle increases from 0°to 45°.The outstanding capacity for solar harvesting and light-to-heat reported in this paper suggests that TCCM has great potential in photothermal therapies,solar desalination,and radiative cooling,etc.
基金supported in part by National Natural Science Foundation of China(NSFC)under Project No.51737010.
文摘The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly distributing torques to minimize the power consumption,the driving range of 4WID-EV can be effectively improved.This paper proposes a model predictive control(MPC)-based torque distribution scheme,which minimizes the power consumption of 4WID-EVs while guaranteeing its tracking performance of planar motions.By incorporating the motor model considering iron losses,the optimal torque distribution can be achieved without an additional torque controller.Also,for this reason,the proposed control scheme is computationally efficient,since the power consumption term to be optimized,which is expressed as the product of the motor voltages and currents,is much simpler than that derived from the efficiency map.With reasonable simplification and linearization,the MPC problem is converted to a quadratic programming problem,which can be solved efficiently.The simulation results in MATLAB and CarSim co-simulation environments demonstrate that the proposed scheme effectively reduces power consumption with guaranteed tracking performance.
基金financially supported by the National Natural Science Foundation of China(51976190)the Zhejiang Provincial Natural Science Foundation(LR18E060001)+1 种基金the Innovative Research Groups of the National Natural Science Foundation of China(51621005)the Fundamental Research Funds for the Central Universities(2019FZA4013)。
文摘Oxygen vacancy(Vo)is a significant component in defect engineering.The present work reports the anchoring effects of initial Vo for further loading modifications and the reducing capacity of photoinduced Vo for pure water splitting.Herein,we propose Ni-loaded Cu-doped TiO_(2)(NCT)materials by successive doping and loading.The continuously added Ni ions should accumulate around the Vos and gradually grow into complete nickel oxide crystals,achieving a higher average valence state of the Ni species.NiO crystals can be detected on a 0.5%NCT sample,while the structure of Ni_(2)O_(3) has been confirmed with a higher nickel mass ratio.Moreover,the introduction of nickel oxide effectively improves the photochemical and electrochemical performance by the interface charge separation,finally reaching an H2 yield of 30.6 pmol/g-cat on 0.5%NCT for Vo-based photo-thermal coupling reaction,which consists of Vo generation in photo and Vo consumption in thermal environment.In situ infrared spectroscopy further indicated that the presence of high valence state nickel oxide hindered the H2 formation but effectively promoted the conventional oxidizing reaction,with an H2 yield of 20.6 mmol/g-cat in a methanol-water reaction on the 2.0%NCT material.In summary,Vo controls the morphological structure of Ni loading and produces diverse effects for reactions with dissimilar mechanisms,which provides a novel way to design modifications for promoting various chemical reactions.
文摘Pancreatic cancer(PanCa)presents a catastrophic disease with poor overall survival at advanced stages,with immediate requirement of new and effective treatment options.Besides genetic mutations,epigenetic dysregulation of signaling pathway-associated enriched genes are considered as novel therapeutic target.Mechanisms beneath the deoxyribonucleic acid methylation and its utility in developing of epi-drugs in PanCa are under trails.Combinations of epigenetic medicines with conventional cytotoxic treatments or targeted therapy are promising options to improving the dismal response and survival rate of PanCa patients.Recent studies have identified potentially valid pathways that support the prediction that future PanCa clinical trials will include vigorous testing of epigenomic therapies.Epigenetics thus promises to generate a significant amount of new knowledge of biological and medical importance.Our review could identify various components of epigenetic mechanisms known to be involved in the initiation and development of pancreatic ductal adenocarcinoma and related precancerous lesions,and novel pharmacological strategies that target these components could potentially lead to breakthroughs.We aim to highlight the possibilities that exist and the potential therapeutic interventions.
基金National Natural Science Foundation of China(Grant No.51505335)Industry University Cooperation Collaborative Education Project of the Department of Higher Education of the Ministry of Education of China(Grant No.202102517001)Doctor Startup Projects of TUTE of China(Grant No.KYQD1806)。
文摘The electrically driven large-load-ratio six-legged robot with engineering capability can be widely used in outdoor and planetary exploration.However,due to the particularity of its parallel structure,the effective utilization rate of energy is not high,which has become an important obstacle to its practical application.To research the power consumption characteristics of robot mobile system is beneficial to speed up it toward practicability.Based on the configuration and walking modes of robot,the mathematical model of the power consumption of mobile system is set up.In view of the tripod gait is often selected for the six-legged robots,the simplified power consumption model of mobile system under the tripod gait is established by means of reducing the dimension of the robot’s statically indeterminate problem and constructing the equal force distribution.Then,the power consumption of robot mobile system is solved under different working conditions.The variable tendencies of the power consumption of robot mobile system are respectively obtained with changes in the rotational angles of hip joint and knee joint,body height,and span.The articulated rotational zones and the ranges of body height and span are determined under the lowest power consumption.According to the walking experiments of prototype,the variable tendencies of the average power consumption of robot mobile system are respectively acquired with changes in duty ratio,body height,and span.Then,the feasibility and correctness of theory analysis are verified in the power consumption of robot mobile system.The proposed analysis method in this paper can provide a reference on the lower power research of the large-load-ratio multi-legged robots.
基金This work is supported by Sichuan Science and Technology Program(NO.2021YFG0127).
文摘The hybrid beamforming is a promising technology for the millimeter wave MIMO system,which provides high spectrum efficiency,high data rate transmission,and a good balance between transmission performance and hardware complexity.The most existing beamforming systems transmit multiple streams by formulating multiple orthogonal beams.However,the Neural network Hybrid Beamforming(NHB)adopts a totally different strategy,which combines multiple streams into one and transmits by employing a high-order non-orthogonal modulation strategy.Driven by the Deep Learning(DL)hybrid beamforming,in this work,we propose a DL-driven nonorthogonal hybrid beamforming for the single-user multiple streams scenario.We first analyze the beamforming strategy of NHB and prove it with better Bit Error Rate(BER)performance than the orthogonal hybrid beamforming even with the optimal power allocation.Inspired by the NHB,we propose a new DL-driven beamforming scheme to simulate the NHB behavior,which avoids time-consuming neural network training and achieves better BERs than traditional hybrid beamforming.Moreover,our simulation results demonstrate that the DL-driven nonorthogonal beamforming outperforms its traditional orthogonal beamforming counterpart in the presence of subconnected schemes and imperfect Channel State Information(CSI).
文摘While the Yagi-Uda array has been studied for decades, one issue appears to have received less attention than perhaps it should, namely, the effects on performance of the array’s driven element length and its length-to-diameter ratio. This paper looks at that question. It shows that decreasing the L/D ratio increases impedance bandwidth, but it may shift the IBW band sufficiently far from the design frequency that other parameters such as gain and front-to-back ratio probably are adversely affected. It also shows that array performance is not relatively independent of element diameters. This paper also investigates the effect of lengthening the driven element, which can substantially improve IBW. Several iterations of a 3-element prototype and improved arrays are modeled with the Method of Moments and discussed in detail. A five step design procedure is recommended and applied to a Genetic Algorithm-optimized 3-element Yagi at 146 MHz. This array exhibits excellent performance in terms of gain, front-to-back ratio, and especially impedance bandwidth (nearly 14% for voltage standing wave ratio ≤ 2:1 with two frequencies at which 50 ? is almost perfectly matched). While the analysis and recommended design steps are applied to cylindrical array elements, which commonly are aluminum tubing for stand-alone VHF-SHF Yagis, they can be applied to other element geometries as well using equivalent cylindrical radii, for example, Printed Circuit Board traces for planar arrays. One consequence of lengthening the driven element while reducing its L/D ratio is that some reactance is introduced at the array feedpoint which must be tuned out, and two approaches for doing so are suggested.
文摘The implosion plasma drive fusion pellet of inertial confinement is a concept related to nuclear fusion,a process in which atomic nuclei combine to form heavier nuclei,releasing a large amount of energy in the process.The implosion plasma drive fusion pellet is a potential fuel source for achieving controlled nuclear fusion.ICF(inertial confinement fusion)is a technique used to achieve fusion by compressing a small target containing fusion fuel to extremely high densities and temperatures using lasers or other methods.The implosion plasma drive fusion pellet concept involves using a small pellet of deuterium and tritium(two isotopes of hydrogen)as fusion fuel,and then rapidly heating and compressing it using a pulsed power system.The implosion process creates a high-pressure plasma that ignites the fusion reactions,releasing energy in the form of neutrons and charged particles.The resulting energy can be captured and used for power generation.This technology is still in the experimental stage,and significant research and development is required to make it commercially viable.However,it has the potential to provide a virtually limitless source of clean energy with no greenhouse gas emissions or long-term radioactive waste.Be that as it may,ICF has to get exact control of the implosion process,mitigate insecurities,and create modern materials and advances to resist the extraordinary conditions of the combined response.