The rising of the world’s population leads automatically to the rising of water demand. As a consequence the lack of drinking water increases. Currently, approximately 1.2 billion people globally (one-sixth of the wo...The rising of the world’s population leads automatically to the rising of water demand. As a consequence the lack of drinking water increases. Currently, approximately 1.2 billion people globally (one-sixth of the world’s population) do not have access to adequate clean water. Since a large part of the world’s population is concentrated in coastal areas, the desalination of seawater seems to be a promising solution, especially in our Arab world. An innovative stand-alone solar desalination system could be used to produce drinking water from seawater or any brackish water sources. The great advantage of such a system is that it combines efficient desalination technology, reverse osmosis, with a renewable energy source;the main goal is improving the technical feasibility of such systems. There are many advantages of this coupling with RE resources;first of all we separate the drinking water from the electricity grid and its faults, save the burning fossil fuel and its emissions and can provide fresh water to remote communities that do not have sufficient traditional energy sources;but as we see in the thesis we don’t have economic benefit;because these projects depend on the electricity cost in each country and its location and its solar specifications. We design and implement a small laboratorial model for PV-RO (Photo-Voltaic Powered Reverse Osmosis) to recognize the its performance for seawater and brackish water;many of the problems are interrupted such as embargo on Syria;so we see this project has to be done according to affordable local potentialities, but we crave to keep the principle of operation, so we make it for the tap water which close to brackish.展开更多
CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state d...CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs.展开更多
This study evaluated the potential of Botswana’s sustainable energy production using ERA5 reanalysis data of solar irradiance variability on an optimally inclined plane from 1971 to 2020. Spatial-temporal solar irrad...This study evaluated the potential of Botswana’s sustainable energy production using ERA5 reanalysis data of solar irradiance variability on an optimally inclined plane from 1971 to 2020. Spatial-temporal solar irradiance fluctuations were the focus of the study, and the relation to cloud cover and aerosol optical depth was investigated. The key findings suggest that the summer/rainfall season (November to March) is the peak season with average monthly solar irradiance of 313 - 445 W/m2 across southern, central, and northern parts of Botswana, the Kalahari Desert and the Makgadikgadi Pans being identified as prime sites for solar energy projects. The long-term trend analysis showed a decrease in solar irradiance in December but a consistent increase from August to October, indicating a potential shift in solar resources toward an earlier season. Contrary to other studies that found that aerosol optical depth dominates effects on long-term trends and year-to-year variability of solar irradiance, for this case, cloud cover, particularly mid-level clouds, is found to have a more dominant role in Botswana. Solar irradiance characteristics of three distinct regions were identified through K-means clustering. Moreover, Ensemble Empirical Mode Decomposition (EEMD) analysis showed the commonality and time scale linkage between solar irradiance and cloud cover between the identified regions. These results highlight the importance of including cloud-related weather patterns under the global warming scenario in solar energy planning and emphasize the secondary role of aerosols in Botswana, thus providing critical information for the region’s solar energy development and policy formulation.展开更多
文摘The rising of the world’s population leads automatically to the rising of water demand. As a consequence the lack of drinking water increases. Currently, approximately 1.2 billion people globally (one-sixth of the world’s population) do not have access to adequate clean water. Since a large part of the world’s population is concentrated in coastal areas, the desalination of seawater seems to be a promising solution, especially in our Arab world. An innovative stand-alone solar desalination system could be used to produce drinking water from seawater or any brackish water sources. The great advantage of such a system is that it combines efficient desalination technology, reverse osmosis, with a renewable energy source;the main goal is improving the technical feasibility of such systems. There are many advantages of this coupling with RE resources;first of all we separate the drinking water from the electricity grid and its faults, save the burning fossil fuel and its emissions and can provide fresh water to remote communities that do not have sufficient traditional energy sources;but as we see in the thesis we don’t have economic benefit;because these projects depend on the electricity cost in each country and its location and its solar specifications. We design and implement a small laboratorial model for PV-RO (Photo-Voltaic Powered Reverse Osmosis) to recognize the its performance for seawater and brackish water;many of the problems are interrupted such as embargo on Syria;so we see this project has to be done according to affordable local potentialities, but we crave to keep the principle of operation, so we make it for the tap water which close to brackish.
基金financially supported by the Guangzhou Basic and Applied Basic Research Foundation,China(No.303523)。
文摘CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs.
文摘This study evaluated the potential of Botswana’s sustainable energy production using ERA5 reanalysis data of solar irradiance variability on an optimally inclined plane from 1971 to 2020. Spatial-temporal solar irradiance fluctuations were the focus of the study, and the relation to cloud cover and aerosol optical depth was investigated. The key findings suggest that the summer/rainfall season (November to March) is the peak season with average monthly solar irradiance of 313 - 445 W/m2 across southern, central, and northern parts of Botswana, the Kalahari Desert and the Makgadikgadi Pans being identified as prime sites for solar energy projects. The long-term trend analysis showed a decrease in solar irradiance in December but a consistent increase from August to October, indicating a potential shift in solar resources toward an earlier season. Contrary to other studies that found that aerosol optical depth dominates effects on long-term trends and year-to-year variability of solar irradiance, for this case, cloud cover, particularly mid-level clouds, is found to have a more dominant role in Botswana. Solar irradiance characteristics of three distinct regions were identified through K-means clustering. Moreover, Ensemble Empirical Mode Decomposition (EEMD) analysis showed the commonality and time scale linkage between solar irradiance and cloud cover between the identified regions. These results highlight the importance of including cloud-related weather patterns under the global warming scenario in solar energy planning and emphasize the secondary role of aerosols in Botswana, thus providing critical information for the region’s solar energy development and policy formulation.