Acrylate-terminated poly(lactic acid)(DPLA) was synthesized by polycondensation, using lactic acid, polyalcohol and acrylic acid as the raw materials. The prepolymer products in each process were characterized by ...Acrylate-terminated poly(lactic acid)(DPLA) was synthesized by polycondensation, using lactic acid, polyalcohol and acrylic acid as the raw materials. The prepolymer products in each process were characterized by FT-IR, 1 H-NMR, GPC and DSC. DPLAs were then formulated with reactive diluent and diphenyl ketone as photoinitiator and photopolymerized into film(FPLA). Thermal stability and degradation properties of the UV curing PLA film were studied. The results showed that the structures of prepolymer and the performances of the film could be adjusted by changing the types and content of the branching agent polyalcohol. After crosslinking modification, the degradation rate of FPLA was reduced and FPLA had better thermal stability than the pure PLA.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.51273060,21174108)the Key Project of Hubei Provincial Department of EducationOpen Fund of Hubei Provincial Key Laboratory of Green Materials for Light Industry
文摘Acrylate-terminated poly(lactic acid)(DPLA) was synthesized by polycondensation, using lactic acid, polyalcohol and acrylic acid as the raw materials. The prepolymer products in each process were characterized by FT-IR, 1 H-NMR, GPC and DSC. DPLAs were then formulated with reactive diluent and diphenyl ketone as photoinitiator and photopolymerized into film(FPLA). Thermal stability and degradation properties of the UV curing PLA film were studied. The results showed that the structures of prepolymer and the performances of the film could be adjusted by changing the types and content of the branching agent polyalcohol. After crosslinking modification, the degradation rate of FPLA was reduced and FPLA had better thermal stability than the pure PLA.