We report on the observation of ultracold ground electric-state cesium molecules produced directly in a magneto-optical trap with a good signal-to-noise ratio. These molecules arise from the photoassociation of magnet...We report on the observation of ultracold ground electric-state cesium molecules produced directly in a magneto-optical trap with a good signal-to-noise ratio. These molecules arise from the photoassociation of magneto-optical trap lasers and they are detected by resonantly enhanced multiphoton ionization technology. The production rate of ultracold cesium molecules is up to 4× 10^4 s-1. We measure the characteristic time of the ground electric-state cesium molecules generated in the experiment and investigate the Cs2+ molecular ion intensity as a function of the trapping laser intensity and the ionization pulse laser energy. We conclude that the production of cold cesium molecules may be enhanced by using appropriate experimental parameters, which is useful for future experiments involving the production and trapping of ultracold ground electric-state molecules.展开更多
基金supported by the National Key Fundamental Basic Research Program of China (Grant No. 2006CB921603)the Major Program of National Natural Science Foundation of China (Grant No. 10934004)+3 种基金the National Natural Science Foundation of China (Grant Nos. 60978018,60808009,61008012,and 60978001)the New Teacher Fund of the Ministry of Education of China(Grant No. 200801081021)the National Natural Science Foundation of China for Excellent Research Team (Grant No. 60821004)the Natural Science Foundation of Shanxi Province of China (Grant No. 2009011059-2)
文摘We report on the observation of ultracold ground electric-state cesium molecules produced directly in a magneto-optical trap with a good signal-to-noise ratio. These molecules arise from the photoassociation of magneto-optical trap lasers and they are detected by resonantly enhanced multiphoton ionization technology. The production rate of ultracold cesium molecules is up to 4× 10^4 s-1. We measure the characteristic time of the ground electric-state cesium molecules generated in the experiment and investigate the Cs2+ molecular ion intensity as a function of the trapping laser intensity and the ionization pulse laser energy. We conclude that the production of cold cesium molecules may be enhanced by using appropriate experimental parameters, which is useful for future experiments involving the production and trapping of ultracold ground electric-state molecules.